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Abstract. We construct geometric maps from the cyclic homology groups of the (compact or

wrapped) Fukaya category to the corresponding S1-equivariant (Floer/quantum or symplectic)

cohomology groups, which are natural with respect to all Gysin and periodicity exact sequences
and are isomorphisms whenever the (non-equivariant) open-closed map is. These cyclic open-closed

maps give (a) constructions of geometric smooth and/or proper Calabi-Yau structures on Fukaya
categories (the latter is equivalent, in characteristic 0, to the existence of a cyclic A∞ model) and

(b) a purely symplectic proof of the non-commutative Hodge-de Rham degeneration conjecture for

smooth and proper subcategories of Fukaya categories. Further applications of cyclic open-closed
maps, to counting curves in mirror symmetry and to comparing topological field theories, are the

subject of joint projects with Perutz-Sheridan [GPS2,GPS1] and Cohen [CG].

1. Introduction

This paper concerns the compatibility between chain level S1 actions arising in two different
types of Floer theory on a symplectic manifold. The first of these C−∗(S

1)1 actions is induced ge-
ometrically on the Hamiltonian Floer homology chain complex CF ∗(M), formally a type of Morse
complex for an action functional on the free loop space, through rotating free loops. The homolog-
ical action of [S1] is known as the BV operator [∆], and the C−∗(S

1) action can be used to define
S1-equivariant Floer homology theories — see e.g., [S4,BO]2. The second C−∗(S

1) action lies on the
Fukaya category, and has discrete or combinatorial origins, coming from the hierarchy of compatible
cyclic Z/kZ actions on cyclically composable chains of morphisms between Lagrangians. A (cate-
gorical analogue of a) fundamental observation of Connes’, Tsygan, and Loday-Quillen that such a
structure, which exists on any category C, can be packaged into a C−∗(S

1) action on the Hochschild
homology chain complex CH∗(C) of the category (see e.g., [C1, T2, LQ, M1, K2]) The associated
operation of multiplcation by (a cycle representing) [S1] is frequently called the Connes’ B operator
B, and the corresponding S1-equivariant homology theories are called cyclic homology groups.

A relationship between the Hochschild homology of the Fukaya category and Floer homology is
provided by the so-called open-closed string map [A]

(1.1) OC : CH∗(F)→ CF ∗+n(M).

Our main result is about the compatibility of OC with C−∗(S
1) actions. Namely, we prove that OC

can be made (coherently homotopically) C−∗(S
1)-equivariant:

The author was partially supported by the National Science Foundation through a postdoctoral fellowship —
grant number DMS-1204393 — and agreement number DMS-1128155. Any opinions, findings and conclusions or

recommendations expressed in this material are those of the author(s) and do not necessarily reflect the views of the
National Science Foundation.

1We use a cohomological grading convention in this paper, so singular chain complexes are negatively graded.
2Sometimes S1-equivariant Floer theory is instead defined as Morse theory of an action functional on the S1-Borel

construction of the loop space. For a comparison between these two definitions, see [BO].
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Theorem 1. The map OC admits a geometrically defined ‘S1-equivariant enhancement’, to an

A∞ homomorphism of C−∗(S
1)-modules, ÕC ∈ RHomn

C−∗(S1)(CH∗(F),CF∗(M)).

Remark 1. Theorem 1 implies (but is not implied by) the homological fact that [OC] intertwines
homological actions of [S1]. This is proven as a stepping stone to Theorem 1 in Theorem 5 below.

Remark 2. Note that OC typically does not have the property of strictly intertwining the

C−∗(S
1) actions. In particular, the homomorphism ÕC involves extra data recording coherently

higher homotopies between the two C−∗(S
1) actions. This explains our use of the term ‘enhance-

ment’.

Remark 3. It can be shown using usual invariance arguments that this enhancement is canon-
ical: any two such geometrically defined enhancements are homotopic.

To explain the consequences of Theorem 1 to cyclic homology and equivariant Floer homology,
recall that there are a variety of S1-equivariant homology chain complexes (and homology groups)
that one can associate functorially to an A∞ C−∗(S

1) module P . For instance, denote by

(1.2) PhS1 , PhS
1

, PTate

the homotopy orbit complex, homotopy fixed point complex, and Tate complex constructions of P ,
described in §2.2. When applied to the Hochschild complex CH∗(C,C), the constructions (1.2) by
definition recover complexes computing (positive) cyclic homology, negative cyclic homology, and
periodic cyclic homology groups of C respectively (see §3.1). Similarly H∗(CF ∗(M)hS1) is the S1-
equivariant Floer cohomology studied (for the symplectic homology Floer chain complex) in [BO].

The groups H∗(CF ∗(M)hS
1

) and H∗(CF ∗(M)Tate) have also been studied in recent work in Floer
theory [S8] . Functoriality of the constructions (1.2) and homotopy invariance properties of C−∗(S

1)
modules (see Cor. 3 and Prop. 2) immediately implies the result announced in the abstract:

Corollary 1. Let HF
∗,+/−/∞
S1 (M) denote the (cohomology of the) homotopy orbit complex,

fixed point complex, and Tate complex construction applied to CF ∗(M), and let HC+/−/∞(C) denote

the corresponding positive/negative/periodic cyclic homology groups. Then, ÕC induces cyclic open-
closed maps

(1.3) [ÕC
+/−/∞

] : HC+/−/∞
∗ (F)→ HF

∗+n,+/−/∞
S1 (M),

naturally compatible with respect to the various periodicity/Gysin exact sequences, which are isomor-
phisms whenever OC is. �

The map (1.1) is frequently an isomorphism, allowing one to recover in these cases closed string
Floer/quantum homology groups from open string, categorical ones [BEE,G1,GPS2,AFO+]. In
such cases, Theorem 1 and Corollary 1 allows one to further categorically recover the C−∗(S

1) action
on CF ∗(M) and associated equivariant homology groups.

Remark 4. There are other S1-equivariant homology functors, and our results apply tautolog-
ically to them as well. For instance, consider the contravariant functor P 7→ (PhS1)∨; when applied
to CH∗(C) this produces the cyclic cohomology chain complex of C.

We have been deliberately vague about which Fukaya category and which Hamiltonian Floer
homology groups Theorem 1 applies to, as it applies in several geometric settings. The simplest of
these are

(1) If M is compact, F is the usual Fukaya category of compact Lagrangians (or a summand
thereof). CF ∗(M), the Hamiltonian Floer complex of any Hamiltonian, is quasi-isomorphic
to the quantum cohomology ring with its trivial C−∗(S

1) action.
(2) If M is non-compact and Liouville, one could take F = W to be the wrapped Fukaya

category and CF ∗(M) = SC∗(M) to be the symplectic cohomology ring with its (usually
non-trivial) C−∗(S

1) action,
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(3) If M is non-compact and Liouville, one could take F ⊂ W to be the Fukaya category of
compact Lagrangians. In this case, the map OC factors through CF ∗(M) = H∗(M,∂∞M)
the relative cohomology group with its trivial C−∗(S

1) action. In fact, OC further factors
through the symplectic homology chain complex SC∗(M) = (SC∗(M))∨.

For example, in case (2) above, when the relevant [OC] map is an isomorphism, Corollary 1 computes
various S1-equivariant symplectic cohomology groups (such as the usual equivariant symplectic
cohomology SH∗S1(M), which is the homology of the homotopy orbits complex SC∗(M)hS1) in
terms of cyclic homology groups of the wrapped Fukaya category.

To keep this paper a manageable length, we implement the map ÕC and prove Theorem 1
in the technically simplest settings, when M is either compact and monotone or its Lagrangians
do not bound pseudoholomorphic discs, or when M is Liouville (non-compact, exact, convex at
∞). However, our methods are entirely are orthogonal to the usual analytic difficulties faced in
constructing Fukaya categories and open-closed maps in general contexts, and we expect they should
extend immediately to other settings. For instance, in the setting of relative Fukaya categories of
compact projective Calabi-Yau manifolds, an adapted version of our construction will appear in joint
work with Perutz-Sheridan [GPS1].

Remark 5. There are other settings in which Fukaya categories are well-studied, for instance
Fukaya categories of Lefschetz fibrations (and more general LG models), or more generally partially
wrapped Fukaya categories. We do not discuss these situations in our paper, but expect suitable
versions of Theorem 1 to hold in such settings too.

Remark 6. One can consider variations on Theorem 1. As a notable example, let M denote a
(noncompact) Liouville manifold, and F the Fukaya category of compact Lagrangians in M . Then
there is a non-trivial refinement of the map HH∗(F) → H∗(M,∂M), which can be viewed as a
pairing HH∗(F)×H∗(M)→ k, to a pairing

CH∗(F)⊗ SC∗(M)→ k.

(note symplectic cohomology does not satisfy Poincaré duality in any sense, so this is not equiv-
alent to a map to symplectic cohomology). Our methods also imply that this pairing admits an
S1-equivariant enhancement, with respect to the diagonal C−∗(S

1) action on the left and the trivial
action on the right. Passing to adjoints, we obtain cyclic open closed maps from S1-equivariant sym-
plectic cohomology to cyclic cohomology groups of F, and from cyclic homology of F to equivariant
symplectic homology. See §5.6.2 for a more details.

Beyond categorically computing equiariant Floer cohomology groups, we describe below two
immediate applications of Theorem 1 to the structure of Fukaya categories.

Remark 7. We anticipate additional concrete applications of Theorem 1 and its homological
shadow, Theorem 5. For instance, one can study the compatibility of open-closed maps with dilations
in the sense of [SS], which are elements B in SH∗(M) satisfying [∆]B = 1; the existence of dilations
strongly constrains intersection properties of embedded Lagrangians [S7]. Theorem 5, or rather the
variant discussed in Remark 6, implies if there exists a dilation, e.g., an element x ∈ SH1(M) with
[∆]x = 1, then on the Fukaya category of compact Lagrangians F, there exists x′ ∈ (HHn+1(F))∨

with x′ ◦ [B] = [tr], where tr is the canonical weak Calabi-Yau structure on the Fukaya category (see
§1.1).

1.1. Calabi-Yau structures on the Fukaya category. Calabi-Yau structures are a type of
cyclically symmetric duality structure on a dg or A∞ category C generalizing the notion of a nowhere
vanishing holomorphic volume form on a complex algebraic variety X in the case C = perf(X). As is
well understood, there are two (in some sense dual) types of Calabi-Yau structures on A∞ categories:

(1) proper Calabi-Yau structures [KS1] can be associated to proper categories C (those which
have cohomologically finite-dimensional morphism spaces), abstract and refine the notion of
integration against a nowhere vanishing holomorphic volume form. For C = perf(X) with
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X a proper n-dimensional variety, the resulting structure in particular induces the Serre
duality pairing with trivial canonical sheaf Ext∗(E,F) × Ext∗(F,E) → k[−n], Roughly, a
proper Calabi-Yau structure on C (of dimension n) is a map tr : HC+

∗ (C)→ k[−n] satisfying
a non-degeneracy condition.

(2) smooth Calabi-Yau structures [KV] can be associated to smooth categories C (those with
perfect diagonal bimodule), and abstract the notion of the nowhere vanishing holomorphic
volume form itself, along with the induced identification (by contraction against the volume
form) of polyvectorfields with differential forms. Roughly, a smooth Calabi-Yau structure
on C (of dimension n) is a map cotr : k[n] → HC−∗ (C), or equivalently an element “volC”
in HC−−n(C), satisfying a non-degeneracy condition.

Precise definitions are reviewed in §6. When C is simultaneously smooth and proper, it is a folk
result that the notions are equivalent; see [GPS2, Prop. 6.10].

In general, Calabi-Yau structures may not exist and when they do, there may be a non-trivial
space of choices (see [M3] for an example). Calabi-Yau structures in either form induces non-trivial
identifications between Hochschild invariants of the underlying category C. 3 Moreover, categories
with Calabi-Yau structures carry induced 2-dimensional TQFT operations on their Hochschild ho-
mology, associated to moduli spaces of Riemann surfaces with marked points [C2, KS1] (in the
smooth case, this is still in progress but has been announced by Kontsevich-Vlassopoulous [KV]).
In particular, Calabi-Yau structures play a central role in the mirror symmetry-motivated ques-
tion of recovering Gromov-Witten invariants from the Fukaya category and to the related question
of categorically recovering Hamiltonian Floer homology with all of its (possibly higher homotopi-
cal) operations. See [C2, C3, K4] for discussion and work around these questions and [GPS2] for
applications to recovering genus-0 Gromov-Witten invariants.

Remark 8. A closely related to (1), and well studied, notion is that of a cyclic A∞ category:
this is an A∞ category C equipped with a chain level perfect pairing

〈−,−〉 : hom(X,Y )× hom(Y,X)→ k[−n]

such that the induced correlation functions

〈µd(−,−, . . . ,−),−〉

are strictly (graded) cyclically symmetric, for each d see e.g., [C2,F2,CL]. Although the property
of being a cyclic A∞ structure is not a homotopy invariant notion (i.e., not preserved under A∞
quasi-equivalences), cyclic A∞ categories and proper Calabi-Yau structures turn out to be weakly
equivalent in characteristic 0, in the following sense. Any cyclic A∞ category carries a canonical
proper Calabi-Yau structure , and Kontsevich-Soibelman proved that a proper Calabi-Yau structure
on any A∞ category C determines a (essentially canonical) quasi-isomorphism between C and a cyclic

A∞ category C̃ [KS1, Thm. 10.7]. When char(k) 6= 0, these two notions differ in general, due to
group cohomology obstructions to imposing cyclic symmetry. Moreoever, it seems that the notion
of a proper Calabi-Yau structure is the “correct” one. (for instance, by Theorem 2, the compact
Fukaya category always has one).

As a first application of Theorem 1, we verify the longstanding expectation that various compact
Fukaya categories possess geometrically defined canonical Calabi-Yau structures:

Theorem 2. The Fukaya category of compact Lagrangians has a canonical geometrically defined

proper Calabi-Yau structure over any ground field k (over which the Fukaya category and ÕC are
defined).

3In the proper case, there is an induced isomorphism between Hochschild cohomology and the linear dual of
Hochschild homology. In the smooth case, there is an isomorphism between Hochschild cohomology and homology

without taking duals.
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In fact, this proper Calabi-Yau structure is easy to describe in terms of the cyclic open-closed map

(c.f., Cor. 1): it is the composition of the map ÕC
+

: HC+
∗ (F)→ H∗+n(M,∂M)((u))/uH∗+n(M,∂M)[[u]]4

with the linear map to k which sends the top class PD(pt) · u0 ∈ H2n(M,∂M) to 1, and all other
generators α · u−i to 0. See §6 for more details.

As a consequence of the discussion in Remark 8, specifically [KS1, Thm. 10.7], we deduce that

Corollary 2. If char(k) = 0, then the Fukaya category of compact Lagrangians carries, after
quasi-isomorphism, a cyclic A∞ structure.

Remark 9. In the case of compact symplectic manifolds and over k = a Novikov field containing
R, Fukaya [F2] constructed a cyclic A∞ model of the Floer cohomology algebra of a single compact
Lagrangian, which was extended to multiple objects by Abouzaid-Fukaya-Oh-Ohta-Ono [AFO+]

Remark 10. From the perspective of constructing 2d-TFTs from categories, Kontsevich-Soibelman
[KS2] partly show (on the closed sector) that a proper Calabi-Yau structure can be used instead
of the (weakly equivalent in characteristic 0) cyclic A∞ structures considered in [C2]. One might
similarly hope that, for applications of cyclic A∞ structures to disc counting/open Gromov-Witten
invariants developed in in [F3], a proper Calabi-Yau structure was in fact sufficient. See [CL] for
related work.

Turning to smooth Calabi-Yau structures, in §6.2, we will establish the following existence of
smooth Calabi-Yau structures, which applies to wrapped Fukaya categories of non-compact (Liou-
ville) manifolds as well as Fukaya categories of compact manifolds:

Theorem 3. Suppose our symplectic manifold M is non-degenerate in the sense of [G1], mean-
ing that the map [OC] : HH∗−n(F) → HF ∗(M) hits the unit 1 ∈ HF ∗(M). Then, its (compact or
wrapped) Fukaya category F possesses a canonical, geometrically defined strong smooth Calabi-Yau
structure.

Once more, the cyclic open-closed map gives an efficient description of this structure: it is the

unique element HC−−n(F) mapping via ÕC
−

to the geometrically canonical lift 1̃ ∈ H∗(CF ∗(M)hS
1

)

of the unit 1 ∈ CF ∗(M) described in §4.4. 5

Remark 11. One can study other Fukaya categories of non-compact Lagrangians, such as
Fukaya categories of Landau-Ginzburg (LG) models (X,π : X → C), and more generally partially
wrapped Fukaya categories (or equivalently, wrapped Fukaya categories of Liouville sectors) . In
contrast to compact Fukaya categories or wrapped Fukaya categories of Liouville manifolds, such
categories are almost never Calabi-Yau in either sense, even if they are smooth or proper; indeed they
typically arise as homological mirrors to perfect/coherent complexes on non-Calabi-Yau varieties.

These notions will be studied further in joint work with R. Cohen [CG], particularly with regards
to the relationship of Calabi-Yau structures between the wrapped Fukaya category of a cotangent
bundle and string topology category of the zero section.

1.2. Noncommutative Hodge-de-Rham degeneration for smooth and proper Fukaya
categories. For a C−∗(S

1) module P, there is a canonical Tor spectral sequence converging to
H∗(PhS1) with first page H∗(P)⊗kH

∗(khS1) ∼= H∗(P)⊗kH∗(CP∞). When applied to the Hochschild
complex P = CH∗(C) of a (dg/A∞) category C, the resulting spectral sequence, from (many copies of)
HH∗(C) to HC+(C) is called the Hochschild-to-cyclic or noncommutative Hodge-de-Rham (ncHDR)
spectral sequence. The latter name comes from the fact that when C = perf(X) is perfect complexes

4Recall that C∗(M,∂M) has the trivial C−∗(S1) module structure; the homology of the associated homotopy

orbit complex is H∗+n(M,∂M)((u))/uH∗+n(M,∂M)[[u]] where |u| = 2, as described in §2.
5As shown in [G2,GPS2], if [OC] hits 1, then [OC] is an isomorphism, and hence by Corollary 1, [ÕC

−
] is too.

Hence one can speak about the unique element.
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on a variety X, this spectral sequence is equivalent (via Hochschild-Kostant-Rosenberg (HKR) iso-
morphisms) to the usual Hodge-to-de-Rham spectral sequence from Hodge cohomology to de Rham
cohomology

H∗(X,Ω∗X)⇒ H∗dR(X),

which degenerates in characteristic 0 whenever X is smooth and proper. Motivated by this, Kont-
sevich formulated the noncommutative Hodge-de-Rham (ncHDR) degeneration conjecture : for any
smooth and proper category C in characteristic 0, its ncHDR spectral sequence degenerates. A
general proof of this fact was recently given by Kaledin, following earlier work establishing it in the
coconnective case.

Using the cyclic open-closed map, we can give a purely symplectic proof of the nc-HdR degen-
eration property for those C arising as Fukaya categories:

Theorem 4. Let C ⊂ F(X) be a smooth and proper subcategory of the Fukaya category of a
compact symplectic manifold over any field k (over which the Fukaya category is defined). Then, the
nc Hodge-de-Rham spectral sequence for C degenerates.

Proof. The nc Hodge-de-Rham spectral sequence degenerates at page 1 if and only if P is
isomorphic (in the category of C−∗(S

1) modules) to a trivial C−∗(S
1)-module, e.g., if the C−∗(S

1)
action is trivializable. For compact symplectic manifolds M , recall that CF ∗(M) ∼= H∗(M) has a
canonically trivial(izable) C−∗(S

1) action.
By earlier work [GPS2,G4], whenever A is smoooth, OC|A is an isomorphism from HH∗−n(A)

onto a non-trivial summand S of HF ∗(M) ∼= QH∗(M); the C−∗(S
1) action on this summand

is trivial too. Theorem 1 shows that ÕC|A induces an isomorphism in the category of C−∗(S
1)

modules between CH∗−n(A) and S with its trivial action, so we are done. �

Remark 12. Theorem 4 is true for a field k of any characteristic, at least whenever the Fukaya
category and relevant structures are defined over k (for instance, in monotone settings). This is
in stark contrast to the case of arbitrary smooth and proper dg or A∞ categories in characteristic
p, whose ncHDR spectral sequences need not degenerate. One explanation for this phenomenon
is is that characteristic p Fukaya categories (whenever Lagrangians are monotone or tautologically
unobstructed at least) seem to always admit a lift to second Witt vectors6

As is described in joint work (partly ongoing) with T. Perutz and N. Sheridan [GPS2,GPS1],

the cyclic open-closed map ÕC
−

can further be shown to be a morphism of semi-infinite Hodge
structures, a key step (along with the above degeneration property and construction of Calabi-Yau
structure) in recovering Gromov-Witten invariants from the Fukaya category and enumerative mirror
predictions from homological mirror theorems.

1.3. Outline of Paper. In §2, we recall a convenient model for the category of A∞ modules
over C−∗(S

1) and various equivariant homology functors from this category. In §3 we review various
Fukaya categories and the C−∗(S

1) action on its (and indeed, any cohomologically unital A∞ cate-
gory’s) non-unital Hochschild chain complex. In §4, we recall the construction of the A∞ C−∗(S

1)
module structure on the (Hamiltonian) Floer chain complex, following [BO,S4] (note that our tech-
nical setup is slightly different, though equivalent). Then we prove our main results in §5. Some

technical and conceptual variations on the construction of ÕC (including Remark 6) are discussed at
the end of this section, see §5.6. Finally, in §6 we apply our results to construct proper and smooth
Calabi-Yau structures, proving Theorems 2 and 3.

Conventions. We work over a ground field k of arbitrary characteristic (though we note that
all of our geometric constructions are valid over an arbitrary ring, e.g., Z). All chain complexes will
be graded cohomologically, including singular chains of any space, which hence have negative the
homological grading and are denoted by C−∗(X).

6The author wishes to thank Mohammed Abouzaid for discussions regarding this point.
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2. Complexes with S1 actions

In this section, we introduce a convenient model for the category of A∞ C−∗(S
1) modules in

which the A∞ C−∗(S
1) can be described by a single (hierarchy) of maps satisfying equations. We

also describe various equivariant homology complexes in this language in terms of simple formulae.

2.1. Definitions. Let C−∗(S
1) denote the dg algebra of chains on the circle with coefficients

in k, graded cohomologically, with multiplication induced by the Pontryagin product S1×S1 → S1.
This algebra is formal, or quasi-isomorphic to its homology, an exterior algebra on one generator Λ
of degree -1 with no differential. Henceforth, by abuse of notation we take this exterior algebra as
our working model for C−∗(S

1)

(2.1) C−∗(S
1) := k[Λ]/Λ2, |Λ| = −1,

and use the terminology Csing−∗ (S1) to refer to usual singular chains on S1.

Definition 1. A strict-S1 complex, or a chain complex with strict/dg S1 action, is a (unital)
differential graded module over k[Λ]/Λ2.

Let (M,d) be a strict-S1 complex; by definition (M,d) is a co-chain complex (note: all complexes
are graded cohomologically), and the dg k[Λ]/Λ2 module structure is equivalent to specificying the
operation of multiplying by Λ

(2.2) ∆ = Λ · − : M∗ →M∗−1,

which must square to zero and anti-commute with d. In other words, (M,d,∆) is what is known as
a mixed complex, see e.g., [B,K1,L2].

We will need to work with the weaker notion of an A∞ action, or rather an A∞ module structure
over C−∗(S

1) = k[Λ]/Λ2. Recall that a (left) A∞ module M [K3,S5,S3,G2] over the associative
graded algebra A = k[Λ]/Λ2 is a graded k-module M equipped with maps

(2.3) µk|1 : A⊗k ⊗M →M, k ≥ 0

of degree 1 − k, satisfying the A∞ module equations described in [S3] or [G2, (2.35)]. Since A =
k[Λ]/Λ2 is unital, we can work with modules that are also strictly unital (see [S3, (2.6)]); this implies
that all multiplications by a sequence with at least one unit elements is completely specified,7 and
hence the only non-trivial structure maps to define are the operators

(2.4) δk := µ
k|1
M (Λ, . . . ,Λ︸ ︷︷ ︸

k copies

,−) : M →M [1− 2k], k ≥ 0.

The A∞ module equations are equivalent to the following relations for (2.4) for each s ≥ 0,

(2.5)

s∑
i=0

δiδs−i = 0.

We summarize the discussion so far with the following definition:

Definition 2. An S1-complex, or a chain complex with a A∞ S1 action, is a stricly uni-
tal (right) A∞ module M over k[Λ]/Λ2. Equivalently, it is a graded k-module M equipped with
operations {δk : M →M [1− 2k]}k≥0 satisfying, for each s ≥ 0, the hierarchy of equations (2.5).

7More precisely µ1|1(1,m) = m and µk|1(. . . , 1, . . . ,m) = 0 for k > 1.
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Remark 13. If X is a space with S1 action, then as described in §22, C−∗(X) carries a dg

Csing−∗ (S1) module structure. Under theA∞ equivalence Csing−∗ (S1) ∼= k[Λ]/Λ2, it follows that C−∗(X)
carries an A∞ (not necessarily dg!) k[Λ]/Λ2 module structure, which can be made strictly unital
(by [L1, Thm. 3.3.1.2] or by passing to normalized chains). By strictification, one can recover a dg
k[Λ]/Λ2 module equivalent (as A∞ modules) to C−∗(X); or by passing to a further quotient complex
of unordered singular chains; see e.g., [CG, Appendix.].

Remark 14. There are multiple sign conventions for A∞ modules; most notably the two most
common conventions appearing in the A∞ algebra/category and A∞ module equations appear in
[S3, (2.6)] and [S5, (1j)] respectively. However, the differences in sign conventions are completely
irrelevant for strictly unital A = k[Λ]/Λ2 modules, as the relevant signs all vanish (they involve sums
of reduced degrees of some elements in Ā = spank(Λ), but these degrees are all zero).

For s = 0, (2.5) says simply that the differential d = δ0 squares to 0; for s = 1, (2.5) implies
δ := δ1 anti-commutes with d, and for s = 2, (δ)2 = −(dδ2 + δ2d), or that δ2 is chain-homotopic to
zero, but not strictly zero, as measured by the chain homotopy δ2.

Remark 15. The data (M, δk, k ≥ 0) is sometimes referred to as an∞-mixed complex or an S1-
complex (c.f., [BO,Z] but note the alternate homological grading conventions in the first reference).

S1-complexes, as strictly unital A∞ modules over the augmented algebra A = k[Λ]/Λ2, are the
objects of a dg category dg category which we will call

(2.6) S1−mod := uA−mod

(compare [S3, p. 90, 94] for the definition of mod(A) = mod(A,k)) whose morphisms and compo-
sitions we now recall. Denote by ε : A → k the augmentation map, and Ā = ker ε = spank(Λ) the
augmentation ideal. Let M and N be two strictly unital A∞ A-modules. A unital pre-morphism of

degree k from M to N of degree k is a collection of maps F d|1 : A
⊗d ⊗M → N , d ≥ 0, of degree

k − d, or equivalently since dimk(A) = 1 in degree -1, a collection of operators

F = {F d}d≥0

F d := F d|1(Λ, . . . ,Λ︸ ︷︷ ︸
d copies

,−) : M → N [k − 2d].(2.7)

The space of pre-morphisms of each degree form the graded space of morphisms in S1−mod, which
we will denote by RhomS1(−,−):

RhomS1(M,N) :=
⊕
k∈Z

Rhomk
S1(M,N) := ⊕k homgrV ect(T (A[1])⊗M,N [k])

= (
⊕
k∈Z

homgrV ect(⊕d≥0M [2d], N [k])).
(2.8)

There is a differential ∂ on (2.8) described in [S3, p. 90]; in terms of the simplified form of pre-
morphisms (2.7), one has

(2.9) (∂F )s =

s∑
i=0

F i ◦ δMs−i − (−1)deg(F )
s∑
j=0

δNs−j ◦ F j .

An A∞ k[Λ]/Λ2 module homomorphism, or S1-complex homomorphism is a pre-morphism F = {F d}
which is closed, e.g., ∂F = 0. In particular, F is an A∞ module homomorphism if the following
equations are satisfied, for each s:

(2.10)

s∑
i=0

F i ◦ δMs−i = (−1)deg(F )
s∑
j=0

δNs−j ◦ F j .

8



Note that the s = 0 equation reads F 0 ◦ δM0 = (−1)deg(F )δN0 ◦ F 0, so (if ∂F = 0) F 0 induces
a cohomology level map [F 0] : H∗(M) → H∗+deg(F )(N). A module homomorphism (or closed
morphism) F is said to be a quasi-isomorphism if [F 0] is an isomorphism on cohomology.

Remark 16. There is an enlarged notion of a non-unital pre-morphism (used for modules
which aren’t necessarily strictly unital), which is a collection of maps F d : A⊗d⊗M → N instead of

A
⊗d⊗M → N . Any pre-morphism as we’ve defined induces a non-unital pre-morphism by declaring

F d(. . . , 1, . . . ,m) = 0. For strictly unital modules, the resulting inclusion is a quasi-isomorphism.

Remark 17. When M and N are dg modules, or strict S1 complexes, RhomS1(M,N) is a
reduced bar model of the chain complex of derived k[Λ]/Λ2 module homomorphisms, which is one of
the reasons we’ve adopted the terminology “Rhom”. In the A∞ setting, we recall that there is no
sensible “non-derived” notion of a k[Λ]/Λ2 module map (compare [S3]).

The composition in the category S1−mod

(2.11) RhomS1(N,P )⊗ RhomS1(M,N)→ RhomS1(M,P )

is defined by

(2.12) (G ◦ F )s =

s∑
j=0

Gs−j ◦ F j

Remark 18. If M is any S1-complex, then its endomorphisms RhomS1(M,M) equipped with
composition, form a dg algebra. As an example, consider M = k, with trivial module structure
(determined by the augmentation ε : k[Λ]/Λ2 → k). It is straightforward to compute that, as a dga

(2.13) RhomS1(k,k) ∼= k[u], |u| = 2.

(in terms of the definition of morphism spaces (2.8), u corresponds to the unique morphism G =
{Gd}d≥0 of degree +2 with G1 = id and Gs = 0 for s 6= 1).

In addition to taking the morphism spaces, one can define the (derived) tensor product of S1-
complexes N and M : using the isomorphism A ∼= Aop coming from commutativity of A = k[Λ]/Λ2,
first view N as a right A∞ A module (see [S3, p. 90, 94] where the category of right A modules are
called mod(k, A), [S5, (1j)], [G2, §2]) and then take the usual tensor product of N and M over A
(see [S3, p. 91] or [G2, §2.5]). The resulting chain complex has underling graded vector space

N ⊗L
S1 M := ⊕d≥0N ⊗A[1]⊗d ⊗M

=
⊕
d≥0

(N ⊗k M)[2d](2.14)

(the degree s part is
⊕

d≥0

⊕
sNt⊗Ms+2d−t). Let us refer to an element n⊗m of the dth summand

of this complex by suggestive notation n ⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d times

⊗m as in the first line of (2.14). With this

notation, the differential on (2.14) acts as

(2.15) ∂(n⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d

⊗m) =

d∑
i=0

(−1)|m|δNi n⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d−i

⊗m+ n⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d−i

⊗δMi m

 .

(here our sign convention follows [G2, §2.5] rather than [S3], though the sign difference is minimal).

Remark 19. Analogously to Remark 17, if M and N are dg k[Λ]/Λ2-modules, the chain complex
described above computes the ordinary derived tensor product, whose homology is Tork[Λ]/Λ2(M,N).

While we have therefore opted for the notation N ⊗L
AM in this more general setting, this (derived)

tensor product is typically written in the A∞ literature simply as N ⊗AM .
9



The pairing (2.14) is suitably functorial with respect to morphisms of the S1-complexes involved,
meaning that − ⊗S1 N and M ⊗S1 − both induce dg functors from S1−mod to chain complexes
(compare [S3, p. 92]). For instance, if F = {F j} : M0 → M1 is a pre-morphism of S1-complexes,
then there are induced maps

F] : N ⊗L
S1 M0 → N ⊗L

S1 M1(2.16)

n⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d

⊗m 7→
d∑
j=0

n⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d−j

⊗F j(m);

F] : M0 ⊗L
S1 N →M1 ⊗L

S1 N(2.17)

m⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d

⊗n 7→
d∑
j=0

(−1)deg(F )·|n|F j(m)⊗ Λ⊗ · · · ⊗ Λ︸ ︷︷ ︸
d−j

⊗n;

which are chain maps if ∂(F ) = 0.
Hom and tensor complexes of S1-complexes, as in any category of A∞ modules, satisfy the

following strong homotopy invariance properties:

Proposition 1 (Homotopy invariance). If F : M → M ′ is any quasi-isomorphism of S1-

complexes (meaning ∂(F ) = 0 and [F 0] : H∗(M)
∼=→ H∗(M ′) is an isomorphism), then composition

with F induces quasi-isomorphisms of hom and tensor complexes:

F ◦ · : RhomS1(M ′, P )
∼→ RhomS1(M,P )

· ◦ F : RhomS1(P,M)
∼→ RhomS1(P,M ′)

F] : N ⊗L
S1 M

∼→ N ⊗L
S1 M ′.

F] : M ⊗L
S1 N

∼→M ′ ⊗L
S1 N.

(2.18)

The proof is a standard argument involving filtration of the above hom and tensor complexes

by “length” (with respect to the number of A
⊗d

factors).

Let (P, {δPi }) and (Q, {δQj }j) be S1-complexes, and f : P → Q a chain map of some degree

deg(f) (with respect to the δP0 and δQ0 differentials). An S1-equivariant enhancement of f is a
degree deg(f) homomorphism F = {Fi}i≥0 of S1-complexes (e.g., a closed morphism, so F satisfies
(2.10)) with [F0] = [f ].

Remark 20. Note that there are a series of obstructions to the existence of an S1-equivariant
enhancement of a given chain map f ; for instance a necessary condition is the vanishing of [f ] ◦
[δP1 ]− [δQ1 ] ◦ [f ] = 0.

Finally, we note that, just as the product of S1 spaces X × Y possesses a diagonal action, the
(linear) tensor product of S1-complexes is again an S1 complex.

Lemma 1. If (M, δMeq =
∑∞
i=0 δ

M
j u

j) and (N, δNeq =
∑∞
i=0 δ

N
i u

i) are S1-complexes, then the

graded vector space M ⊗N is naturally an S1-complex with δM⊗Neq =
∑∞
i=0 δ

M⊗N
k uk, where

(2.19) δM⊗Nk (m⊗ n) := (−1)|n|δMk m⊗ n + m⊗ δNk n

We call the resulting S1 action on M ⊗N the diagonal S1-action.

Proof. We compute

(2.20) δM⊗Nj δM⊗Nk (m⊗n) = δMj δ
M
k m⊗n+(−1)|n|+1δMj m⊗δNk n+(−1)|n|δMk m⊗δNj n+m⊗δNj δNk n

Summing over all j+k = s, the middle two terms cancel in pairs and the sums of the leftmost terms
(respectively rightmost) terms respectively vanish because M (respectively N) is an S1-complex.

�
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2.2. Equivariant homology groups. Let M be an S1 complex. Let k denote the strict trivial
S1 complex concentrated in degree 0, induced by the augmentation map ε : k[Λ]/Λ2 → k.

Definition 3. The homotopy orbit complex of M is the (derived) tensor product of M with k
over C−∗(S

1):

(2.21) MhS1 := k⊗L
S1 M.

Remark 21. When M = C−∗(X), with S1-complex induced by a topological S1 action on X
as in Remark 13, the complex (2.21) computes the Borel equivariant homology of X:

MhS1 ' CS
1

−∗(X) = C−∗(X ×S1 ES1) ∼= C−∗(XhS1).

In some sense, this is a justification for the usage of the the hS1 notation.

Remark 22. The topologically minded reader should recall how to compute the (Borel) equi-
variant homology a space X with G = S1 action via chain level data, as follows: First, note C−∗(G)
is a dg algebra (with Pontryagin product induced by G×G→ G), and C−∗(EG) and C−∗(X) are dg
modules over C−∗(G) (with Pontryagin multiplication again). Then, one recalls that the equivariant
homology chain complex, which is typically described as the singular chains on the homotopy orbit
space XhG ' X ×G EG, can be computed as:

(2.22) CG−∗(X) := C−∗(X ×G EG) ' C−∗(X)⊗C−∗G C−∗(EG).

(see e.g., [M2, Thm. 7.27]) On the other hand, the morphism of C−∗(G) modules C−∗(EG)→ k ∼=
C−∗(pt) realizes C−∗(EG) as a free resolution of k (as G acts on EG freely), hence (2.22) computes
the derived tensor product of C−∗(X) with k, and we have

(2.23) HG
−∗(X) ∼= H−∗(C−∗X ⊗L

C−∗G k)

This justifies the use of the terminology C−∗(X)hG ∼= C−∗X ⊗L
C−∗G

k.

Definition 4. The homotopy fixed point complex of M is the chain complex of morphisms
from k to M in the category of S1-complexes:

(2.24) MhS1

:= RhomS1(k,M).

Remark 23. To motivate the usage “homotopy fixed points,” note that in the topological
category, the usual fixed points of a G action can be described as MapsG(pt,X). Note that when
M = C−∗(X), for X a space with S1 action, it is not necessarily true (unlike the case of homotopy

orbits discussed in remark 21) that C−∗(X
hS1

) = C−∗(MapsS1(ES1, X)) is equal to (C−∗(X))hS
1

.

There is, however, always a map C−∗(X
hS1

)→ (C−∗(X))hS
1

.

Remark 24. Composition induces a natural action of

(2.25) RhomS1(k,k) = k[u] (|u| = 2) = H∗(BS1)

on the homotopy fixed point complex. There is a third important equivariant homology complex,

called the periodic cyclic, or Tate complex of M , defined as the localization of MhS1

away from
u = 0;

(2.26) MTate := MhS1

⊗k[u] k[u, u−1].

The Tate construction sits in an exact sequence between the homotopy orbits and fixed points.

Remark 25 (Gysin sequences). It is straightforward from the viewpoint of A∞ C−∗(S
1) modules

to explain the appearance of various Gysin and periodicity sequences. Take for instance the Gysin
exact triangle

MhS1 →MhS1[2]→M
[1]→ · · ·

This is a manifestation of a canonical exact triangle of objects in S1−mod:

k
u→ k[2]→ k[Λ]/Λ2 [1]→ · · ·

11



(recall in Remark 18 it was shown RhomS1(k,k) ∼= k[u]), pushed forward by the functor RhomS1(·,M).
The others exact sequences arise similarly.

As a special case of the general homotopy-invariance properties of A∞ modules stated in Propo-
sition 1, we have:

Corollary 3. If F : M → N is a homomorphism of S1-complexes (meaning a closed mor-
phism), it induces chain maps between equivariant theories

FhS
1

: MhS1

→ NhS1

(2.27)

FhS1 : MhS1 → NhS1(2.28)

FTate : MTate → NTate(2.29)

If F is a quasi-isomorphism of S1-complexes (meaning simply [F 0] is a homology isomorphism),
then (2.27)-(2.29) are quasi-isomorphisms of chain complexes. �

Functoriality further tautologically implies that

Proposition 2. If F : M → N is a homomorphism of S1-complexes, then the various induced
maps (2.27) - (2.29) intertwine all of the long exact sequences for (equivariant homology groups of)
M with those for N . �

2.3. u-linear models for S1-complexes. It is convenient to package the data described in
the previous two sections into “u-linear generating functions”, in the following way: Let u be a
formal variable of degree +2. Let us use the abuse of notation

M [[u]] := M⊗̂kk[u]

for the u-adically completed tensor product in the category of graded vector spaces; in other words
M [[u]] := ⊕kM [[u]]k, where M [[u]]k = {

∑∞
i=0miu

i | mi ∈ Mk−2i}. Then, we frequently write an
S1-complex (M, {δk}k≥0) as a k-module M equipped with a map

(2.30) δMeq =

∞∑
i=0

δMi u
i : M →M [[u]]

of total degree 1, satisfying δ2
eq = 0 (where we are implicitly conflating δeq with its u-linear extension

to a map M [[u]]→M [[u]] in order to u-linearly compose and obtain a map M →M [[u]]).
Pre-morphisms from M to N of degree k can similarly be recast as maps Feq =

∑∞
i=0 Fiu

i :
M → N [[u]] of pure degree k (so each Fi has degree k − 2i). The differential on pre-morphisms can
be described u-linearly as

(2.31) ∂(Feq) = Feq ◦ δMeq − δNeq ◦ Feq,

and composition is simply the u-linear composition Geq◦Feq (again, one implicitly u-linearly extends
Geq and then u-linearly composes); explicitly (

∑
i≥0Giu

i)◦(
∑
j≥0 Fju

j) =
∑
k≥0(

∑
i+j=kG

i◦F j)uk.
With respect to this packaging, the formulae for various equivariant homology groups can be

given the following, more readable form:

MhS1 = (M((u))/uM [[u]], δeq)(2.32)

MhS1

= (M [[u]], δeq)(2.33)

MTate = (M((u)), δeq)(2.34)

where again, we use the abuse of notation M((u)) = M [[u]] ⊗k[u] k[u, u−1] (on the other hand,
note that (2.32) is not completed). As before, any homomorphism (that is, closed morphism)
of S1 complexes Feq =

∑∞
i=0 F

iui induces a k[u]-linear chain map between homotopy-fixed point
complexes by u-linearly extended composition, and hence, by tensoring over k[u] with k((u))/uk[[u]]
or k((u)), chain maps between homotopy orbit and Tate complex constructions.

12



Remark 26. This u-linear lossless packaging of the data describing an S1-complex is a manifes-
tation of Koszul duality; in the case of A = k[Λ]/Λ2, it posits that there is a fully faithful embedding,

Rhom(k,−) = (−)hS
1

from A-modules into B := RhomA(k,k) = k[u] modules.

From the u-linear point of view, it is easy to observe that the exact triangle of k[u] modules
k[[u]] → k((u)) → k((u))/uk[[u]] induces a (functorial in M) exact triangle between equivariant

homology chain complexes MhS1 →MTate →MhS1 [2]
[1]→.

3. Circle action on the open sector

Recall that an A∞ category C consists of the data of

• a collection of objects ob C

• for each pair of objects X,X ′, a graded vector space homC(X,X ′)
• for any set of d+ 1 objects X0, . . . , Xd, higher composition maps

(3.1) µd : homC(Xd−1, Xd)⊗ · · · ⊗ homC(X0, X1)→ homC(X0, Xd)

of degree 2− d, satisfying the (quadratic) A∞ relations, for each k > 0:

(3.2)
∑
i,l

(−1)ziµk−l+1
C (xk, . . . , xi+l+1, µ

l
C(xi+l, . . . , xi+1), xi, . . . , x1) = 0.

with sign

(3.3) zi := ||x1||+ · · ·+ ||xi||.

where |x| denotes degree and ||x|| := |x| − 1 denotes reduced degree.

The first two equations (k = 1, 2) of (3.2) says in particular that (µ1)2 = 0, so µ1 is a differential,
and the cohomology level maps [µ2] are a genuine composition for the (non-unital) category with
morphisms

(3.4) HomH∗(C)(X,Y ) := H∗(homC(X,Y ), µ1)

We will implicitly always assume that C is cohomologically unital, meaning the cohomology level
morphism spaces (3.4) have identity morphisms, making H∗(C) a genuine category.

For any (cohomologically unital) A∞ category C, a certain chain complex computing Hochschild
homology called the non-unital Hochschild complex CHnu

∗ (C) possesses the structure of a strict
S1-complex (in the sense of Definition 1), which is an invariant (up to quasi-isomorphism) of the
quasi-equivalence class (and indeed Morita equivalence class) of C. Whenever C is strictly unital,
the relevant S1-structure is known to be compatible with the traditional S1-structure defined on the
Hochschild complex by Connes, Tsygan, and Loday-Quillen [C1,T2,LQ].

Turning to our geometric context, we review the construction of the A∞ structure on the
(wrapped or compact) Fukaya category. Fukaya categories are well known to be cohomologically uni-
tal, and hence it follows that the non-unital Hochschild complex of the Fukaya category (computes
Hochschild homology and) carries a canonical up to quasi-isomorphism strict S1 action.

3.1. Hochschild and cyclic homology. Let C be an A∞ category. The Hochschild, or cyclic
bar complex of C is the direct sum of all cyclically composable sequences of morphism spaces in C:

(3.5) CH∗(C) :=
⊕

k≥0,Xi0 ,...,Xik∈ob C

homC(Xik , Xi0)⊗ homC(Xik−1, Xik)⊗ · · · ⊗ homC(Xi0 , Xi1).

Remark 27. Frequently the notation CH∗(C,C) is used to emphasize that Hochschild homology
is taken here with diagonal coefficients, rather than coefficients in another bimodule. We will adopt
the slightly simpler CH∗(C).
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The differential b acts on Hochschild chains by summing over ways to cyclically collapse elements
by any of the A∞ structure maps:

b(xd⊗xd−1 ⊗ · · · ⊗ x1) =∑
(−1)#d

kµd−i(xk, . . . , x1,xd, xd−1, . . . , xk+i+1)⊗ xk+i ⊗ · · · ⊗ xk+1

+
∑

(−1)z
s
1xd ⊗ · · · ⊗ µj(xs+j+1 ⊗ · · · ⊗ xs+1)⊗ xs ⊗ · · · ⊗ x1.

(3.6)

with signs

zki :=

k∑
j=i

||xi||(3.7)

#d
k := zk1 · (1 +zdk+1) +zd−1

k+1 + 1(3.8)

In this complex, Hochschild chains are graded as follows:

(3.9) deg(xd ⊗ xd−1 ⊗ · · · ⊗ x1) := deg(xd) +

d−1∑
i=1

deg(xi)− d+ 1 = |xd|+
d−1∑
i=1

||xi||.

If C is a strictly unital A∞ category, meaning that one has chain level identity elements e+
X ∈

homC(X,X), for all X ∈ ob C, satisfying

µ1(e+
X) = 0

(−1)|y|µ2(e+
X0
, y0) = y0 = µ2(y0, e

+
X1

)

µd(· · · , e+
X , · · · ) = 0 for d > 2.

(3.10)

Connes [C1, §II] observed that via combining the discrete Z/kZ cyclic rotation operation and in-
sertions of e+

X , one can equip the Hochschild chain complex with a strict S1 action. The relevant
operator B, known as the Connes’ B operator, is defined as the composition of several basic opera-
tions.

First, denote by t the (signed) cyclic permutation operator, generating the Z/kZ cyclic action

(3.11) t : xk ⊗ · · · ⊗ x1 7→ (−1)||x1||·zk2+||x1||+||xk||x1 ⊗ xk ⊗ · · · ⊗ x2,

Let N denote the norm of this operation; that is the sum of all powers of t (this depends on k, the
length of a given Hochschild chain):

N : xk ⊗ · · · ⊗ x1 = σ 7→ (1 + t+ t2 + · · ·+ tk−1)σ(3.12)

Let s denote the operation of inserting a strict unit e+
X (for each Hochschild chain there is only one

X which ensures the resulting sequence of morphisms remains cyclically composable).

s : xk ⊗ · · · ⊗ x1 7→ (−1)||xk||+zk1+1e+
Xik
⊗ xk ⊗ · · · ⊗ x1,

where xk ∈ homC(Xik , Xi0)
(3.13)

(recall that our sign convention involves Koszul signs where every operation by default acts on the
right). The Connes’ B operator is defined as

(3.14) B := (1− t)sN.

The proof of the following is identical to the proof for associative algebras:

Lemma 2 (Compare [L2] §2.1). If C is strictly unital, then B2 = 0 and Bb + bB = 0 on the
chain level. In other words, (CH∗(C), δ0 = b, δ1 = B, δ≥2 = 0) is a complex with strict S1 action
(e.g., a mixed complex). �
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There is also a quasi-isomorphic normalized Hochschild complex CHred
∗ (C,C), a quotient of

CH∗(C,C) in which at most the first element of a Hochschild chain is allowed to be a strict unit. On
the reduced complex, Connes’ B has the simpler form:

Bred = sN.

Remark 28. Following [S5,A,G2], we have adopted the following Koszul sign convention for
A∞ algebra and Hochschild complexes: we should think of a Hochschild chain xk⊗· · ·⊗x1 formally
as the chain “xk ⊗ | ⊗ xk−1 ⊗ · · · ⊗ x1, where all xi (including xk) carry their reduced degree, and
| carries degree 1. (so the pair “xk ⊗ |” carries degree |xk|). This formal perspective is compatible
with viewing the initial element xk as belonging to the diagonal bimodule C∆, with its slightly
sign-twisted bimodule multiplications (which are sign-twisted µk’s in a manner compatible with this
point of view; see [G2, §2.6]) rather than a morphism in the category C. To illustrate this point of
view in practice, note that the operator t, which involves permuting x1 to the front of the chain and
xk to the right of the formal element |, must therefore come with a sign ||xk||+ ||x1||(zk2 + 1) as we
wrote above. Similarly, all operations on a Hochschild chain, such as applying µ to a subsequence,
or insertion of a unit, act “from the right” and hence come with Koszul reordering signs.

There are alternate, potentially simpler Koszul conventions for defining the Hochschild com-
plex of the shifted diagonal bimodule, e.g., [S3, S9] but we have opted for the convention which is
compatible with the existing literature on open-closed maps.

Unfortunately, Fukaya categories are typically not strictly unital (but rather, cohomologically
unital), at least geometrically, so the complex CH∗(F,F) does not have an as cleanly defined strict
k[Λ]/Λ2 action. Instead, we consider the quasi-isomorphic non-unital Hochschild complex, which
always carries a natural strict S1 action. This complex seems to have been introduced by Tsygan
[T2] and Loday-Quillen [LQ, §4] . We note that there are other methods of seeing the S1 action on
a Hochschild complex of F, and at least one other method of constructing cyclic open-closed maps;
see Remark 31.

As a graded vector space, the non-unital Hochschild complex consists of two copies of the ordinary
Hochschild complex, the second copy shifted down in grading by 1:

(3.15) CHnu
∗ (C) := CH∗(C)⊕ CH∗(C)[1]

With respect to the decomposition (3.15), we sometimes refer to elements as σ := α̌ + β̂, with the
notation α̂ or β̌ indicating that the element α and β belong to the left or right factor respectively.
Similarly, we refer to the left and right factors as the check factor and the hat factor respectively.

Let b denote the usual Hochschild differential, and b′ denote a version of the Hochschild differ-
ential omitting the “wrap-around terms” (this is simply often called the bar differential) as follows:

b′(xd⊗xd−1 ⊗ · · · ⊗ x1) =∑
(−1)z

s
1xd ⊗ · · · · · · ⊗ xs+j+1 ⊗ µj(xs+j ⊗ · · · ⊗ xs+1)⊗ xs ⊗ · · · ⊗ x1

+
∑

(−1)z
d−j
1 µj(xd, xd−1, . . . , xd−j+1)⊗ xd−j ⊗ · · · ⊗ x1.

(3.16)

For an element β̂ = xd ⊗ · · · ⊗ x1 in the hat (right) factor of the non-unital complex, define an

element d∧∨(β̂) in the check (left) factor of (3.15):

d∧∨(β̂) := (−1)z
d
2+||x1||·zd2+1x1 ⊗ xd ⊗ · · · ⊗ x2 + (−1)z

d−1
1 xd ⊗ · · · ⊗ x1.

= (−1)z
d
1+||xd||(id− t)

(
xd ⊗ · · · ⊗ x1

)
.

(3.17)

In this language, the differential on the non-unital Hochschild complex can be written as:

(3.18) bnu : (α̌, β̂) 7→ (b(α̌) + d∧∨(β̂), b′(β̂))
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or equivalently can be expressed via the matrix

(3.19) bnu =

(
b d∧∨
0 b′

)
.

The inclusion CH∗(C,C) ↪→ CHnu
∗ (C,C) into the left factor is by construction a chain map. Since

the quotient complex is the standard A∞ bar complex with differential b′, which is acyclic for
homologically unital C (by a standard length filtration spectral sequence argument, see e.g., [S5,
Lemma 2.12] or [G2, Prop. 2.2]), hence:

Lemma 3. The inclusion ι : CH∗(C) ↪→ CHnu
∗ (C) is a quasi-isomorphism (when C is cohomo-

logically unital). �

Remark 29. One way to obtain the non-unital Hochschild complex is as follows (compare [L2,
§1.4.1]): first, augment the category C by adjoining strict unit morphisms e+

X to each homC(X,X):
in other words define a new A∞ category C+ with ob C+ = ob C and

(3.20) homC+(X,Y ) =

{
homC(X,Y ) X 6= Y

homC(X,X)⊕ k〈e+
X〉 X = Y

such that C is an A∞ subcategory, and so that the e+
X elements act as strict units:

(−1)|y|µ2(e+
X , y) = µ2(y, e+

X) = y

µk(· · · , e+
X , · · · ) = 0, k > 2.

(3.21)

(this completely determines all A∞ operations in C+. Next, consider the normalized Hochschild

complex CHred
∗ (C+,C+) the quotient complex of CH∗(C) in which at most the starting term of a

Hochschild chain is allowed to be an e+
X . Then, take the further quotient by length 1 Hochschild

chains of the form e+
X (so any chain beginning with e+

X must have length ≥ 2). The resulting

complex, denoted C̃H∗(C
+), which is quasi-isomorphic to CH∗(C) when C has cohomological units,

is isomorphic as a chain complex to CHnu
∗ (C) via the following map f : C̃H∗(C

+) → CHnu
∗ (C): If

α = xd⊗ · · ·⊗x1 denotes a cyclically composible chain of morphisms in C with start object X, then

(3.22)

{
f(e+

X ⊗ α) = α̂

f(α) = α̌

This map is a chain equivalence; in other words, the differential in CHnu on a Hochschild chain α̂
agrees with the usual Hochschild differential applied to e+

X ⊗α using the rules for A∞ multiplication
with a strict unit (3.21).

In light of the previous remark, there is a natural operator Bnu on CHnu
∗ (C) of degree -1, defined

as

Bnu(xk ⊗ · · · ⊗ x1, yl ⊗ · · · ⊗ y1) :=
∑
i

(−1)z
i
1z

k
i+1+||xk||+zk1+1(0, xi ⊗ · · · ⊗ x1 ⊗ xk ⊗ · · · ⊗ xi+1))

= snuN,

(3.23)

where N(xk ⊗ · · ·x1) is as in (3.12) and

(3.24) snu(xd ⊗ · · · ⊗ x1, yt ⊗ · · · ⊗ y1) := (−1)z
d
1+||xd||+1(0, xd ⊗ · · · ⊗ x1).

(in other words, snu(xi⊗· · ·⊗x1⊗xd⊗· · ·⊗xi+1, yt⊗· · ·⊗y1) := (−1)z
d
1+||xi||+1(0, (xi⊗· · ·⊗x1⊗

xd ⊗ · · · ⊗ xi+1))). Note that under the isomorphism f described in Remark 29, snu corresponds
precisely to s defined in (3.13). In particular:

Lemma 4. (Bnu)2 = 0 and bnuBnu + Bnubnu = 0. That is, CHnu
∗ (C) is a strict S1 complex,

with the action of Λ = [S1] given by Bnu. �
16



One can verify that when C is strictly unital, then there is a quasi-isomorphisms of S1-complexes
between CH∗(C) (with b, B) and CHnu

∗ (C) (with bnu, Bnu) (compare [L2, Thm. 2.1.8]). Let beq =
bnu + uBnu be the strict S1-complex structure on the non-unital Hochschild complex CHnu

∗ (C),
u-linearly packaged as in §2.3. Using this, we can define cyclic homology groups:

Definition 5. The (positive) cyclic chain complex, the negative cyclic chain complex, and the
periodic cyclic chain complexes of C are the homotopy orbit complex, homotopy fixed point complex,
and Tate constructions of the S1-complex (CHnu

∗ (C), beq) respectively. That is:

CC+
∗ (C) := (CHnu

∗ (C))hS1 = (CHnu
∗ (C)⊗k k((u))/uk[[u]], beq)(3.25)

CC+
∗ (C) := (CHnu

∗ (C))hS
1

= (CHnu
∗ (C)⊗̂kk[[u]], beq)(3.26)

CC∞∗ (C) := (CHnu
∗ (C))Tate = (CHnu

∗ (C)⊗̂kk((u)), beq)(3.27)

with grading induced by setting |u| = +2, and where (as in §2.3), ⊗̂ refers to the u-adically completed
tensor product in the category of graded vector spaces. The cohomologies of these complexes, denoted

HC+/−/∞
∗ (C), are called the (positive), negative, and periodic cyclic homologies of C respectively.

The C−∗(S
1) module structure on CHnu

∗ (C) is suitably functorial in the following sense: Let
F : C→ C′ be an A∞ functor, There is an induced chain map on non-unital Hochschild complexes

Fnu] : CHnu
∗ (C)→ CHnu

∗ (C′,C′)

(x, y) 7→ (F](x),F′](y))
(3.28)

where

F′](xk ⊗ · · · ⊗ x0) :=
∑

i1,...,is

Fi1(xk · · · )⊗ · · · ⊗ Fis(· · ·x0)

(3.29)

F](xk ⊗ · · · ⊗ x0) :=
∑

i1,...,is,j

Fj+1+i1(xj , . . . , x0, xk, . . . , xk−i1+1)⊗ Fi2(. . .)⊗ · · · ⊗ Fis(xj+is . . . , xj+1).

(3.30)

which is an isomorphism on homology if F is a quasi-isomorphism (indeed, even a Morita equiva-
lence). This functoriality preserves S1 structures:

Proposition 3. Fnu] gives a strict morphism of strict S1-complexes, meaning Fnu] ◦ bnu =

bnu ◦ Fnu] and Fnu] ◦ Bnu = Bnu ◦ Fnu] . In other words, the pre-morphism of A∞ k[Λ]/Λ2 modules
defined as

(3.31) Fd∗(Λ, . . . ,Λ︸ ︷︷ ︸
d

, σ) :=

{
Fnu] (σ) d = 0

0 d ≥ 1

is closed, e.g., an A∞ module homomorphism.

Sketch. It is well known that Fnu] is a chain map, so it suffices to verify that Fnu] ◦ Bnu =

Bnu ◦ Fnu] , or in terms of (3.28)

(3.32) F′] ◦ snuN = snuN ◦ F].

We leave this an exercise, noting that applying either side to a Hochschild chain xk ⊗ · · · ⊗ x1, the
sums match identically. �

Remark 30. Continuing Remark 29, suppose we have constructed CHnu
∗ (C) as C̃H∗(C) :=

CHred
∗ (C+)/⊕X k〈e+

X〉, the quotient of the reduced Hochschild complex of the augmented category
17



C+. Given any F as above, extend F to an augmented functor F̃ by mandating that

F̃1(e+
X) = e+

FX

F̃d(. . . , e+
X , . . .) = 0.

(3.33)

Then Fnu] is just the morphism associated to F̃ between reduced Hochschild complexes, and in
particular Proposition 3 is a consequence of the corresponding statement that unital functors induce
strict S1-morphisms between reduced Hochschild complexes of unital categories.

Remark 31. There are options besides the non-unital Hochschild complex, for seeing the
C−∗(S

1) option on a Hochschild complex of the Fukaya category. For instance one could:

(1) perform a strictly unital replacement (via homological algebra as in [S5, §2] [L1, Thm.
3.2.1.1]), and work with the Hochschild complex of the replacement. However, this doesn’t
retain a relationship between the A∞ operations and geometric structure, and hence is
difficult to use with open-closed maps. Instead, one could:

(2) Geometrically construct a strictly unital structure on the Fukaya category via constructing
homotopy units [FOOO], which roughly consist of a formal (geometrically defined) oper-
ation of multiplying by a strict unit, and higher homotopies between this operation and
multiplying by the geometrically defined cohomological unit. The result is a strictly uni-
tal A∞ category Fhu with homFhu(X,X) = homF(X,X) ⊕ k〈e+

X , fX〉, extending the A∞
structure on F, with e+

X a strict unit and µ1(fX) = e+
X − eX , eX a chosen representative

of a cohomological unit.
Then, the usual Hochschild complex CH∗(F

hu,Fhu) carries a strict S1 action, and one
can construct a cyclic open-closed map with source CH∗(F

hu,Fhu), in a manner completely
analogous to the construction of Fhu. This option is equivalent to the one we have chosen
(and has some benefits), but requires additional technical work.

A geometric construction of homotopy units was introduced in the pioneering work of
[FOOO, Ch. 7, §31]. See [G1] for an implementation in the wrapped, exact, multiple
Lagrangians setting.

3.2. The Fukaya category. For the purposes of simplifying discussion, we focus on the tech-
nically simplest cases in which Fukaya categories can be defined, namely exact (Liouville) and
monotone symplectic manifolds.

Definition 6. An admissible Lagrangian brane consists of a properly embedded Lagrangian
submanifold L ⊂M , satisfying

exactness or monotonicity,(3.34)

depending on the hypotheses imposed on M

and equipped with the following extra data (only required if one wants to work with char k 6= 2 and
Z gradings respectively):

an orientation and Spin structure; and(3.35)

a grading in the sense of [S1].(3.36)

(these choices of extra data require L to be Spin and satisfy 2c1(M,L) = 0, where c1(M,L) ∈
H2(M,L) is the relative first Chern class respectively).

Remark 32. The simplest version of the extra hypotheses (3.34) are as follows: if M is exact,
one can require L to be exact, and come equipped with a fixed primitive fL : L→ R vanishing away
from a compact set.

Denote by ob F a finite collection of admissible Lagrangian branes, which we simply refer to as
Lagrangians. We choose a (potentially time-dependent) Hamiltonian Ht : M → R satisfying the
following non-degeneracy condition.

18



Assumption 1. All time-1 chords of XHt between any pair of Lagrangians in ob F are non-
degenerate.

Remark 33. It is straightforward to adapt all of our constructions to larger collections of
Lagrangians, by for instance, choosing a different Hamiltonian HL0,L1

for each pair of Lagrangians
L0, L1, and by choosing Floer perturbation data depending on corresponding sequences of objects.
We have opted for using a single Ht simply to keep the notation simpler.

For any pair of Lagrangians L0, L1 ∈ ob F, the set of time 1 Hamiltonian flows of H, χ(L0, L1)
can be again thought of as the critical points of an action functional on the path space from L0 to
L1, PL0,L1

(this functional is most easily defined in the presence of primitives λ for ω and fi for
λ|Li). Using the extra data chosen for M in §4.1 and for each Li above, elements of χ(L0, L1) can
be graded by the Maslov index

(3.37) deg : χ(L0, L1)→ Z.

As a graded k-module, the morphism space between L0 and L1, also known as the Lagrangian Floer
complex of L0 and L1 with respect to H, has one (free) generator for each element of χ(L0, L1);
concretely

(3.38) homi
F(L0, L1) = CF ∗(L0, L1, Ht, Jt) :=

⊕
x∈χ(L0,L1),deg(x)=i

|ox|k,

where the orientation line ox is the real vector space associated to x by index theory (see [S5, §11h])
and Vk denotes the k-normalization as in (4.5)).

The A∞ structure maps arise as counts of parameterized families of solutions to Floer’s equation

with source a disc with d inputs and one output. For d ≥ 2, we use the notation R
d

for the (Deligne-
Mumford compactified) moduli space of discs with d+ 1 marked points modulo reparametrization,
with one point z−0 marked as negative and the remainder z+

1 , . . . , z
+
d (labeled counterclockwise from

z−0 ) marked as positive. We orient the open locus of Rd as in [S5, §12g] and [A], by pulling back the

standard orientation from a trivialization. R
d

can be given the structure of a manifold with corners,
and its higher strata are trees of stable discs with a total of d exterior positive marked points and 1
exterior negative marked point.

Denote the positive and negative semi-infinite strips by

Z+ := [0,∞)× [0, 1](3.39)

Z− := (−∞, 0]× [0, 1](3.40)

One first equips the spaces R
d

for each d with a consistent collection of strip-like ends S: that is,

for each component S of R
d
, a collection of maps ε±k : Z± → S all with disjoint image in S, chosen

so that positive/negative strips map to neighborhoods of positively/negatively-labeled boundary
marked points respectively, smoothly varying with respect to the manifolds with corner structure
and compatible with choices made on boundary and corner strata, which are products of lower

dimensional copies of R
k
’s.

In order to associate well-defined counts of transversely cut out moduli spaces to maps from such
a parametrized family of domains, one can perturb Floer’s equation by domain-dependent choices of
data. The following description of the choices required is perhaps over-general, designed essentially
to simultaneously work for the wrapped Fukaya category and compact Lagrangians:

Definition 7 (c.f. [A]). A Floer perturbation datum adapted to a fixed pair (Ht, Jt) for a
surface with boundary marked punctures equipped with fixed strip-like ends consists of the following
choices:

(1) For each strip-like end ε±k , a real number, called a weight wk,
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(2) 1-form: a one-form αS restricting to wkdt on a strip-like end with weight wk.

(ε±k )∗αS = wkdt

(3) A Hamiltonian HS : S → H(M), restricting to H
w2
k
ψwk on a strip-like end with weight wk:

(ε±k )∗HS =
H

w2
k

◦ ψwk

(4) A boundary-shifting map ρ : ∂S̄\{marked points} → (0,∞) satisfying

(ε±k )∗ρ = wk.

(5) An S-dependent almost-complex structure JS satisfying

(ε±k )∗JS = (ψwk)∗Jt.

The operations associated to this family will come from (families of) solutions to a generalization
of Floer’s equation of maps from these domains into M . These equations, for a map u : S → M ,
take the form

(3.41) (du−X ⊗ α)0,1 = 0

where X is the Hamiltonian vector field associated to a surface dependent Hamiltonian HS , α is a
one-form (e.g., dt for the usual Floer equation), and (0, 1) is with respect to some surface dependent
almost complex structure. In order for a solution u to satisfy a strong form of the maximum principle
(some form is required for solutions to not escape to ∞) as in [AS] [A] one sees that α must be
sub-closed, i.e., dα ≤ 0, implying that it is not in general possible to have α restrict exactly to dt on
inputs and outputs. The solution (as in the case of a linear Hamiltonians) is to allow α to be some
multiple of wdt on each end. One still needs a way to identify the resulting complex with the usual
Floer homology with respect to (H,J).

The solution comes via a rescaling trick first observed in [FSS] and systematically developed in
[A]: first one notes that pullback of solutions to Floer’s equation for (H,Jt) by the Liouville flow for
time log(ρ) defines a canonical identification

(3.42) CW ∗(L0, L1;H,Jt) ' CW ∗
(
ψρL0, ψ

ρL1;
H

ρ
◦ ψρ, (ψρ)∗Jt

)
.

The right hand object is equivalently the Floer complex for (ψwL0, ψ
wL1) for a strip with one form

wdt using Hamiltonian H
w2 ◦ ψw and (ψw)∗Jt. One can observe that

Lemma 5. For any ρ, the function H
w2 ◦ ψw lies in H(M), i.e., is quadratic at ∞.

Proof. The Liouville flow is given on the collar by

(3.43) ψw(r, y) = (w · r, y)

so r2 ◦ ψw = w2r2. �

Recall that we have fixed a single Hamiltonian H and time-dependent almost complex structure
Jt such that CW ∗(Li, Lj , H, Jt) is defined for every Li, Lj ∈ ob W. We use the following symbols
to refer to the (positive and negative) semi-infinite strips:

Z+ := [0,∞)× [0, 1](3.44)

Z− := (−∞, 0]× [0, 1](3.45)

Definition 8. Floer datum A Floer datum FS on a stable disc S ∈ R
d

consists of the following
choices on each component:

(1) A collection of strip-like ends S; that is maps ε±k : Z+ → S all with disjoint image in S.
These should be chosen so that positive strips map to neighborhoods of positively-labeled
boundary marked points, and similarly for negative marked points.
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(2) For each strip-like end ε±k , a real number, called a weight wk,
(3) closed 1-form: a one-form αS satisfying dαS = 0, and (αS)|∂S = 0, restricting to wkdt on

a strip-like end with weight wk.

(ε±k )∗αS = wkdt

(4) A Hamiltonian HS : S → H(M), restricting to H
w2
k
ψwk on a strip-like end with weight wk:

(ε±k )∗HS =
H

w2
k

◦ ψwk

(5) A boundary-shifting map ρ : ∂S̄\{marked points} → (0,∞) satisfying

(ε±k )∗ρ = wk.

(6) An almost-complex structure JS satisfying

(ε±k )∗JS = (ψwk)∗Jt.

Definition 9. A pair of Floer data F1
S, F2

S on S ∈ R
d

are said to be conformally equivalent if
for some constant K,

• the strip-like ends coincide,
• α1 = Kα2,
• ρ1 = Kρ2

• H1 = H2

K ◦ ψ
K , and

• J1 = (ψK)∗J2.

Definition 10. A consistent choice of Floer data for the A∞ structure is a(n inductive) choice

of Floer data, for each d ≥ 2 and for each representative S of R
d
, smoothly varying in S, whose

restriction to each boundary stratum is conformally equivalent to the product of Floer data coming
from lower-dimensional spaces. With respect to the boundary gluing charts, the Floer data should
agree to infinite order at boundary strata with Floer data obtained via gluing.

Inductively, since there is a contractible space of choices consistent with lower levels, universal
and consistent choices of Floer data for the A∞ structure exist. Now let L0, . . . , Ld be objects of F,
and consider a sequence of chords ~x = {xk ∈ χ(Lk−1, Lk)} as well as another chord x0 ∈ χ(L0, Ld).
Given a fixed universal and consistent Floer data Dµ, write Rd(x0; ~x) for the space of maps

u : S →M

with source an arbitrary element S ∈ Rd, satisfying moving boundary conditions and asymptotics

(3.46)

{
u(z) ∈ ψρS(z)Lk if z ∈ ∂S lies between zk and zk+1

lims→±∞ u ◦ εk(s, ·) = xk

and differential equation

(3.47) (du−XS ⊗ αS)0,1 = 0

with respect to the complex structure JS and Hamiltonian HS .
The consistency of our Floer data with respect to the codimension one boundary of the abstract

moduli spaces R
d

implies that the (Gromov-type) compactification R
d
(x0; ~x) is obtained by adding

the images of the natural inclusions

(3.48) R
d1

(x0; ~x1)× R
d2

(y; ~x2)→ R
d
(x0; ~x)

where y agrees with one of the elements of ~x1 and ~x is obtained by removing y from ~x1 and replacing
it with the sequence ~x2. Here, we let d1 range from 1 to d, with d2 = d−d1 + 1, with the stipulation
that d1 = or d2 = 1 is the semistable case:

(3.49) R
1
(x0;x1) := R(x0;x1)
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Lemma 6. For a generically chosen Floer data Dµ, the moduli space R
d
(x0; ~x) is a smooth

compact manifold of dimension

deg(x0) + d− 2−
∑

1≤k≤d

deg(xk),

and for fixed ~x is empty for all but finitely many x0.

Proof. The integrated maximum principle of [A, §B] implies that elements of R(x0; ~x) have
image contained in a compact subset of M dependent on x0 and ~x (this is strongly dependent on the
form of H, J , and α chosen for our Floer data). The same result shows solutions do not exist for x0

of sufficiently negative action compared to ~x (our conventions are such that the action is bounded
above). The rest of the lemma follows from standard transversality methods and index calculations
as in [S5, (9k), (11h), Prop. 11.13]. �

If deg(x0) = 2 − d +
∑d

1 deg(xk), then the elements of R
d
(x0; ~x) are rigid. By [S5, (11h),

(12b),(12d)], given the fixed orientation of Rd, any rigid element u ∈ R
d
(x0; ~x) determines an

isomorphism of orientation lines

(3.50) Rdu : oxd ⊗ · · · ⊗ ox1
−→ ox0

.

We define the dth A∞ operation

(3.51) µd : CW ∗(Ld−1, Ld)⊗ · · · ⊗ CW ∗(L0, L1) −→ CW ∗(L0, Ld)

as a sum

(3.52) µd([xd], . . . , [x1]) :=
∑

deg(x0)=2−d+
∑

deg(xk)

∑
u∈Rd(x0;~x)

(−1)FdRdu([xd], . . . , [x1])

where the sign is given by

(3.53) Fd =

d∑
i=1

i · deg(xi)

(note that this sum is finite by Corollary 6). An analysis of the codimension 1 boundary of 1-
dimensional moduli spaces along with their induced orientations establishes

Lemma 7 ([S5, Prop. 12.3]). The maps µd satisfy the A∞ relations. �

4. Circle action on the closed sector

4.1. Floer cohomology and symplectic cohomology. Let (M2n, ω) be a symplectic mani-
fold satisfying some technical hypotheses (such as Liouville, monotone, etc.—whichever hypothe-
ses satisfy the Assumptions stated below). Given a (potentially time-dependent) Hamiltonian
H : M → R, Hamiltonian Floer cohomology when it is defined is formally the Morse cohomol-
ogy of the H-perturbed action functional on the free loop space of M : AH : LM → R. If ω is exact
and comes with a fixed primitive λ, this functional can be written as:

x 7→ −
∫
x

λ+

∫ 1

0

Ht(x(t))dt

In general, AH may be multi-valued, but dAH is always well-defined, leading at least to a Morse-
Novikov type theory. We write O for the set of critical points of AHt (when Ht is implicit), which
are precisely the time-1 orbits of the associated Hamiltonian vector field XH .

Assumption 2. The elements of O are non-degenerate.
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Optionally, fix the data of a trivialization of a quadratic complex volume form on M , which
allows us to define an absolute Z grading on orbits by deg(y) := n − CZ(y), where CZ is the
Conley-Zehnder index of y.

Fix (potentially S1-dependent) almost complex structure Jt. In the formal picture, this induces
a metric on LM . A Floer trajectory is formally a gradient flowline of AHt using the metric induced
by Jt; concretely it is a map u : (−∞,∞)×S1 →M , satisfying the following gradient flow equation
for AHt , also known as as Floer’s equation:

(4.1) (du−XH ⊗ dt)0,1 = 0

and converging exponentially near ±∞ to a pair of specified orbits y± ∈ O. In standard coordinates
s, t on the cylinder this reads as

(4.2) ∂su = −Jt(∂tu−X).

The following crucial hypothesis is trivial if M is compact, but otherwise will not necessarily hold
for arbitrary (Ht, Jt):

Assumption 3 (A priori compactness estimate). For fixed asymptotics y+, y−, there is a com-
pact set K ⊂M depending only on x±, H, and J , such that any Floer trajectory u between x± has
image contained in K. Moreoever, from a given y+, there are no Floer trajectories to all but finitely
many y−.

The space of non-constant Floer trajectories between a fixed y+ and y− modulo the free R
action given by translation in the s direction is denoted M(y−; y+). As in Morse theory, one should
compactify this space by allowing broken trajectories:

(4.3) M(y−; y+) =
∐

M(y−; y1)×M(y1; y2)× · · · ×M(yk; y+).

The next hypothesis stipulates that aside from the above Morse-type breakings of trajectories,
there are no “bad” breakings (such as sphere bubbles), and moreoever that the actual and formal
dimensions (index-theoretic) dimensions of these moduli spaces agree:

Assumption 4 (Transversality and compactness). For generic choices of (time-dependent) Jt,

M(y−; y+) is a compact manifold (with boundary) of dimension deg(y−) − deg(y+) − 1, at least
whenever this deg(y−)− deg(y+) ≤ 2.

Putting this all together, the Floer co-chain complex for (Ht, Jt) over k has generators corre-
sponding to orbits of Ht:

(4.4) CF i(M ;Ht, Jt) =
⊕

y∈O,deg(y)=i

|oy|k,

where the orientation line oy is a real vector space associated to every orbit in O via index theory (see
e.g., [A, §C.6]) and for any one dimensional real vector space V and any ring k, the k-normalization

(4.5) |V |k
is the k-module generated by the two possible orientations on V , with the relationship that their
sum vanishes (if one does not want to worry about signs, note that |V |Z/2 ∼= Z/2 canonically). The
differential d : CF ∗(M ;Ht, Jt) −→ CF ∗(M ;Ht, Jt) counts rigid elements of the compactified moduli
spaces. To fix sign issues, we recall that for regular elements u ∈M(y0; y1) with deg(y0) = deg(y1)+1
(so u is rigid), there are natural isomorphisms between orientation lines induced by index theory
(see e.g., [S5, (11h), (12b),(12d)], [A, Lemma C.4])

(4.6) µu : oy1 −→ oy0 .

Then, one defines the differential as

(4.7) d([y1]) =
∑

y0;deg(y0)=deg(y1)+1

∑
u∈M(y0;y1)

(−1)deg(y1)µu([y1]).
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Under the assumptions made above, d is well-defined and d2 = 0, and one calls the resulting group
HF ∗(Ht, Jt).

Remark 34. Our (cohomological) grading convention for Floer cohomology follows [S4,R,A,
G1].

4.1.1. Symplectic cohomology. Symplectic cohomology [CFH, CFHW, FH, V], is Hamiltonian
Floer cohomology for a particular class of Hamiltonians on non-compact convex symplectic mani-
folds. There are several methods for defining this group. We define it here by making the following
specific choices of target, Hamiltonian, and almost complex structure:

• M is a Liouville manifold equipped with a conical end, meaning that it comes equipped
with a fixed generic primitive λ of ω, a compact subdomain with boundary M̄ ⊂ M , and
a conical structure outside M̄ :

(4.8) M\M̄ = ([1,+∞)r × ∂M̄, rλ∂M̄ ),

such that the associated Liouville vector field Z is outward pointing along ∂M̄ , and has
the form r∂r on (4.8). The conical structure (4.8) serves primarily as a technical device (it
is known that the resulting invariants are independent of the specific such choice made).

• The Hamiltonian term Ht is a sum H + Ft of an autonomous Hamiltonian H : M → R
which is quadratic at ∞, namely

(4.9) H|M\M̄ (r, y) = r2,

and a time-dependent perturbation Ft such that on the collar (4.8) of M ,
(4.10)

for any r0 � 0, there exists an R > r0 such that F (t, r, y) vanishes in a neighborhood of R.

(for instance, Ft could be supported near non-trivial orbits of H, where it is modeled on
a Morse function on the circle). We denote by H(M) the class of Hamiltonians satisfying
(4.9).

• The almost complex structure should begin to the class J(M) of complex structures which
are rescaled contact type on the conical end, meaning that for some c > 0,

(4.11) λ ◦ J = f(r)dr

where f is any function with f(r) > 0 and f ′(r) ≥ 0.

The following Proposition is well known, and in the formulation described here, appears in e.g.,
[R,A]:

Proposition 4. Assumptions 2, 3, and 4 hold for this M equipped with sufficiently generic
choices of Liouville 1-form λ, Ht, and Jt.

If M , Ht, and Jt are specifically as above, we refer to the Floer co-chain complex CH∗(M,Ht, Jt)
and J as above as the symplectic co-chain complex SC∗(M) and the resulting cohomology group as
symplectic cohomology SH∗(M).

4.1.2. Relative cohomology. If instead we took

• M to be either a Liouville manifold or monotone symplectic manifold
• and Ht to be a non-degenerate Hamiltonian satisfying the following if M is non-compact

(and arbitrary otherwise):

(4.12) Ht|M\M̄ (r, y) = −λr

where λ � 1 is a sufficiently small number (smaller than the length of any Reeb orbit on
∂M̄); and

• Restrict the allowable Jt to be of rescaled contact type as before (which is an empty condition
if M is compact).

The following Proposition is well known:
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Proposition 5. Assumptions 1, 2, and 3 hold, and (for generic Jt when HF ∗(Ht, Jt) is defined)
there is an isomorphism HF ∗(Ht, Jt) ∼= H∗(M̄, ∂M̄). �

The isomorphism can be realized in one of two ways:

• choose H to be a C2 small Morse function, in which case a well-known argument of Floer
[F1] equates HF ∗(Ht, Jt) with the Morse complex of H,

• There is a geometric PSS morphism [PSS] PSS : H2n−∗(M) → HF ∗(Ht, Jt), whose
description we omit here.

4.2. The cohomological BV operator. The first order BV operator is a Floer analogue of
a natural operator that exists on the Morse cohomology of any manifold with a smooth S1 action.
Like the case of ordinary Morse theory, this operator exists even when the Hamiltonian and complex
structure (c.f. Morse function and metric) are not S1-equivariant.

For p ∈ S1, consider the following collection of cylindrical ends on R× S1:

ε+p : (s, t) 7→ (s+ 1, t+ p), s ≥ 0

ε−p : (s, t) 7→ (s− 1, t), s ≤ 0
(4.13)

Pick K : S1 × (R× S1)×M → R dependent on p, satisfying

(4.14) (ε±p )∗K(p, s, ·, ·) = H(t,m)

meaning that

(4.15) Kp(s, t,m) =

{
H(t+ p,m) s ≥ 1

H(t,m) s ≤ −1,

so in the range −1 ≤ s ≤ 1, Kp(s, t,m) interpolates between Ht+p(m) and Ht(m) (and outside of
this interval is independent of s).

Similarly, pick a family of almost complex structures J : S1 × (R× S1)×M → R satisfying

(ε±p )∗J(p, s, t,m) = J(t,m)(4.16)

Now, x+, x− ∈ O, define

(4.17) M−1(x+, x−)

to be the following parametrized moduli space of Floer cylinders

(4.18) {p ∈ S1, u : S →M |

{
lims→±∞(ε±p )∗u(s, ·) = x±

(du−XK ⊗ dt)0,1 = 0.
}

There is a natural bordification by adding broken Floer cylinders to either end

(4.19) M−1(x+, x−) =
∐

M(x+; a0)×· · ·×M(ak−1; ak)×M−1(ak, b1)×M(b1; b2)×· · ·×M(bl;x
−)

For non-compact M , the following hypothesis is important to verify:

Assumption 5 (A priori compactness estimate). The elements of M−1(x+, x−) satisfy an a
priori compactness estimate, meaning for fixed asymptotics y+, y−, there is a compact set K ⊂ M
depending only on x±, H, and J , such that any Floer trajectory u between x± has image contained
in K. Also, from a given y+, there are no Floer trajectories to all but finitely many y−.

Remark 35. In the case of symplectic cohomology Hamiltonians described in §4.1.1, Assumption
5 can be ensured by choosing K carefully as follows. Given that Ht(M) = H + Ft is a sum of an
autonomous term and a time-dependent term that is zero at infinitely many levels tending towards
infinity, we can ensure that

(4.20) at infinity many levels tending towards infinity, Kp(s, t,m) is equal to r2,

and in particular is autonomous. The proof of Assumption 5 follows from [A, §B].
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Assumption 6 (Transversality and compactness). For generic choices of the above data, M−1

is a smooth compact manifold with boundary of dimension deg(x+)−deg(x−) + 1 (at least whenever
this numerical quantity is ≤ 2), with codimension 1 boundary covered by the closure of inclusions of
strata (4.19) consisting of a single breaking.

In the usual fashion, counts associated to the compactified moduli space with the right sign
(which we explain more carefully in the next section) give an operation δ1, satisfying

dδ1 + δ1d = 0.

It would be desirable for δ1 square to zero on the chain level, which would give (SC∗(M), d, δ1)
the structure of a strict S1-complex, or mixed complex. However, the S1 dependence of our Hamil-
tonian and almost complex structure prevent this, in a manner we now explain.

Typically one attempts to prove an geometric/Floer-theoretic operation (such as δ2
1) is zero by

exhibiting that the relevant moduli problem has no zero-dimensional solutions (due to, say, extra
symmetries in the equation), or otherwise arises as the boundary of a 1-dimensional moduli space.
To that end, we first indicate a moduli space parametrized by S1 × S1 which looks like two of the
previous parametrized spaces naively superimposed, leading us to call the associated operation we
call δnaive2 . The extra symmetry involved in this definition will allow us to easily conclude

Lemma 8. δnaive2 is the zero operation.

For (p1, p2) ∈ S1 × S1, consider the following collection of cylindrical ends:

ε+(p1,p2) : (s, t) 7→ (s+ 1, t+ p1 + p2), s ≥ 0

ε−(p1,p2) : (s, t) 7→ (s− 1, t), s ≤ 0
(4.21)

Pick K : (S1 × S1)× (R× S1)×M → R dependent on (p1, p2), satisfying

(4.22) ε±(p1,p2)K(p1, p2, s, ·, ·) = H(t,m)

meaning that

(4.23) K(p1,p2)(s, t,m) =

{
H(t+ p1 + p2,m) s ≥ 1

H(t,m) s ≤ −1,

so in the range −1 ≤ s ≤ 1, Kp1+p2(s, t,m) interpolates between Ht+p1+p2(m) and Ht(m).
Similarly, pick a family of almost complex structures J : S1 × S1 × (R× S1)×M → R

ε±(p1,p2)J(p1, p2, s, t,m) = J(t,m),(4.24)

such that

(4.25) J only depends on the sum p1 + p2.

Now, x+, x− ∈ O, define

(4.26) Mnaive
−2 (x, y)

to be the parametrized moduli space of Floer cylinders

(4.27) {(p1, p2) ∈ S1 × S1, u : S →M |

{
lims→±∞(ε±(p1,p2))

∗u(s, ·) = x±

(du−XK ⊗ dt)0,1 = 0.
}

For generic choices of K and J , this moduli space, suitably compactified by adding broken trajec-
tories, will be a manifold of dimension deg(x) − deg(y) + 2 (the details are similar to the previous
section, and will be omitted). Counts of rigid elements in this moduli space will thus, in the usual
fashion give a map of degree −2, which we call δnaive2 .
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Proof of Lemma 8. Let (p1, p2, u) be an element of Mnaive
−2 (x, y). Then, (p1 − r, p2 + r, u) is

an element too, for any r ∈ S1, as the equation satisfied by the map u only depends on the sum
p1 + p2. We conclude that elements of Mnaive

−2 (x, y) are never rigid, and thus that the resulting
operations δ2 is zero. �

We would like δnaive2 to be genuinely equal to δ2
1 , which would imply that δ2

1 = 0 However, this
is only true on the homology level; the lack of S1 invariance of our Hamiltonian and almost complex
structure, and the corresponding family of choices of homotopy between θ∗Ht and Ht, over varying
θ , breaks symmetry and ensures that δ2

1 6= δnaive2 as geometric chain maps. However, there is a
geometric chain homotopy, δ2 between δ2

1 and δnaive2 along with a hierarchy of higher homotopies δk
forming the S1-complex structure on CF ∗(M), which we define in the next section.

4.3. The chain-level circle action. We turn to a “coordinate-free” definition of the relevant
parametrized moduli spaces, which will help us incorporate the construction into open-closed maps.

Definition 11. A r-point angle-decorated cylinder consists of a semi-infinite or infinite cylinder
C ⊆ (−∞,∞)× S1, along with a collection of auxiliary points p1, . . . , pr ∈ C, satisfying

(4.28) (p1)s ≤ · · · ≤ (pr)s,

where (a)s denotes the s ∈ (−∞,∞) coordinate. The heights associated to this data are the s
coordinates

(4.29) hi = (pi)s, i = 1, . . . , r

and the angles associated to C are the S1 coordinates

(4.30) θi := (p1)t, i ∈ 1, . . . , r.

The cumulative rotation of an r-point angle-decorated cylinder is the first angle:

(4.31) η := η(C, p1, . . . , pr) = θ1.

The ith incremental rotation of an r-point angle-decorated cylinder is the difference between the ith
and i− 1st angles:

(4.32) κinci := θi − θi+1 (where θr+1 = 0).

Definition 12. The moduli space of r-point angle-decorated cylinders

(4.33) Mr

is the space of r-point angle-decorated infinite cylinders, modulo translation.

Remark 36 (Orientation for Mr). Note that Cr, the space of all r-point angle-decorated infinite
cylinders (not modulo translation) has a canonical complex orientation. Thus, to orient the quotient
space Mr := Cr/R it is sufficient to give a choice of trivialization of the action of R on Cr. We
choose ∂s to be the vector field inducing said trivialization.

For an element of this moduli space, the angles and relative heights of the auxiliary points
continue to be well-defined, so there is a non-canonical isomorphism

(4.34) Mr ' (S1)r × [0,∞)r−1

The moduli space Mr thus possesses the structure of an open manifold with corners, with boundary
and corner strata given by the various loci where heights of the auxiliary points pi are coincident
(we allow the points pi themselves to coincide; one alternative is to first Deligne-Mumford com-
pactify, and then collapse all sphere bubbles containing multiple p′is. That the result still forms
a smooth manifold with corners is a standard local calculation near any such stratum). Given an
arbitrary representative C of Mr with associated heights h1, . . . , hr, we can always find a translation
C̃ satisfying h̃r = −h̃1; we call this the standard representative associated to C.
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Given a representative C of this moduli space, and a fixed constant δ, we fix a positive cylindrical
end around +∞

ε+ : [0,∞)× S1 → C

(s, t) 7→ (s+ hr + δ, t)
(4.35)

and a negative cylindrical end around −∞ (note the angular rotation in t!):

ε− : (−∞, 0]× S1 → C

(s, t) 7→ (s− (h1 − δ)), t+ θ1).

These ends are disjoint from the pi and vary smoothly with C; via thinking of C as a sphere
with two points with asymptotic markers removed, these cylindrical ends correspond to the positive
asymptotic marker having angle 0 and the negative asymptotic marker having angle θ1 = κinc1 +
κinc2 + · · ·+ κincr .

There is a compactification of Mr consisting of broken r-point angle-decorated cylinders

(4.36) Mr =
∐
s

∐
j1,...,js;ji>0,

∑
ji=r

Mj1 × · · · ×Mjs .

The stratum consisting of s-fold broken configurations lies in the codimension s boundary, with the
manifolds-with-corners structure explicitly defined by local gluing maps using the ends (4.35) and
(4.36). Note that the gluing maps, which rotate the bottom cylinder in order to match an end (4.35)
with (4.36), induce cylindrical ends on the glued cylinders which agree with the choices of ends made
in (4.35)-(4.36).

The compactification Mr thus has codimension-1 boundary covered by the images of the natural
inclusion maps

Mr−k ×Mk −→ ∂Mr, 0 < k < r(4.37)

M
i,i+1

r −→ ∂Mr, 1 ≤ i < r,(4.38)

where M
i,i+1

r denotes the compactification of the locus where ith and i+ 1st heights are coincident

(4.39) Mi,i+1
r := {C ∈Mr | hi = hi+1}.

With regards to the above stratum, for r > 1 there is a projection map which will be relevant, a
version of the forgetful map which remembers only the first of the angles with coincident heights:

πi : Mi,i+1
r −→Mr−1

(h1, . . . , hi, hi+1 = hi, hi+2, . . . , hr) 7−→ (h1, . . . , hi, hi+2, . . . , hr)

(θ1, . . . , θi, θi+1, . . . , θr) 7−→ (θ1, . . . , θi−1, θi, θ̂i+1, θi+2, . . . , θr).

(4.40)

πi is compatible with the choice of positive and negative ends (4.35)-(4.36) and hence πi extends to
compactifications

(4.41) πi : M
i,i+1

r →Mr−1.

Definition 13. A Floer datum for an r-point angle-rotated cylinder C̃ := (C, p1, . . . , pr) con-
sists of the following choices:

• The positive and negative strip-like ends on ε± : C± → C chosen in (4.35)-(4.36).
• The one-form on C given by α = dt.
• A surface-dependent Hamiltonian HC̃ : C → H(M) compatible with the positive and nega-

tive strip-like ends, meaning that

(4.42) (ε±)∗HC = Ht,

where Ht was the previously chosen Hamiltonian.
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• A surface dependent complex structure JC̃ : C → J1(M) also compatible with ε±, meaning
that

(4.43) (ε±)∗JC̃ = Jt

for our previously fixed choice Jt.

Definition 14. A universal and consistent choice of Floer data for the S1 action is an inductive
choice of Floer data, for each k and each representative S = (C, p1, . . . , pk) of Mk, satisfying the
following conditions at boundary strata:

• At the boundary strata (4.37), the chosen data equals the product of Floer data already
chosen on lower-dimensional spaces. Moreover, the choices made smoothly vary with respect
to the gluing charts.
• At a boundary stratum of the form (4.38), the Floer datum for S is conformally equivalent

to one pulled back from Mk−1 via the forgetful map πi, defined in (4.41).

Inductively, since the space of choices at each level is non-empty and contractible, universal and
consistent choices of Floer data exist. From the gluing map, a representative S sufficiently near the
boundary strata (4.37) inherits cylindrical regions, also known as thin parts, which are the surviving
images of the cylindrical ends of lower-dimensional strata. Together with the cylindrical ends of S,
this determines a collection of cylindrical regions.

Picking a universal and consistent choice of Floer data for the weak S1 action, for (x+, x−) ∈ O,
we define for each k ≥ 1,

(4.44) Mk(x+;x−)

to be the parametrized space of maps

(4.45) {S = (C, p1, . . . , pr) ∈Mk, u : C →M |

{
lims→±∞(ε±)∗u(s, ·) = x±

(du−XHS ⊗ dt)(0,1)S = 0.

meaning that u solves Floer’s equation with respect to the Hamiltonian HS and complex structure JS
chosen for the given element S. Standard methods imply that boundary of the Gromov bordification
Mk(x+;x−) is covered by the images of the natural inclusions

Mr(y;x−)×Mk−r(x
+; y)→ ∂Mk(x+;x−)(4.46)

M
i,i+1

k (x+;x−)→ ∂Mk(x+;x−),(4.47)

along with the usual semi-stable strip breaking boundaries

Mk(y;x−)×M(x+; y)→ ∂Mk(x+;x−)

M(y;x−)×Mk(x+; y)→ ∂Mk(x+;x−)
(4.48)

Standard methods establish that

Lemma 9. For generic choices of Floer data for the weak S1 action, the moduli spaces Mk(x+;x−)
are smooth compact manifolds of dimension

(4.49) deg(x+)− deg(x−) + (2k − 1).

�

As usual, signed counts of rigid elements of this moduli space for varying x+ and x− (using
induced maps on orientation lines, twisted as in the differential by (−1)deg(x+)—see (4.7)) give the
matrix coefficients for the overall map

(4.50) δk : CF ∗(M)→ CF ∗−2k+1(M).
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Lemma 10. For each k,

(4.51)

k∑
i=0

δiδk−i = 0.

Proof. The counts of rigid elements associated to the boundary of 1-dimensional components
of ∂Mk(x+;x−), along with a description of this codimension 1 boundary (4.46)-(4.48) immediately
implies that

(4.52) (

k∑
i=1

δiδk−i) + (
∑
i

δi,i+1
k ) + (dδk + δkd) = 0,

where δi,i+1
k for each i is the operation associated to the moduli space of maps (4.47). (Observe

that δ1,2
2 is precisely the operation δnaive2 from §4.2). Note that the consistency condition for Floer

data implies that the Floer data chosen for elements S ∈ M
i,i+1
k only depends on πi(S), where the

forgetful map πi : M
i,i+1
k → Mk−1 has one-dimensional fibers. Hence given an element (S, u) ∈

M
i,i+1

k (x+;x−), and a point S′ ∈ M
i,i+1
k in the same fiber of πi as S, (S′, u) is another element

of M
i,i+1

k (x+;x−). In other words, elements of M
i,i+1

k (x+;x−) are never rigid, so the associated

operation δi,i+1
k is zero. �

The discussion in §2.1 implies then that

Corollary 4. The pair (CF ∗(M ;Ht, Jt), {δk}k≥0) as defined above form an an S1-complex.
�

In a standard way (see e.g., [S5, §10] [Z], by using continuation maps parametrized by various
(S1)k× (0, 1]k (or equivalently, by spaces of angle-decorated cylinders, not modulo R), to prove that

Proposition 6. Any continuation map f : CF ∗(M,H1) → CF ∗(M,H2) enhances to a homo-
morphism F of S1-complexes. In particular, if [f ] is an isomorphism, then there is a corresponding
quasi-isomorphism of S1-complexes.

In particular, the S1-complex defined on the symplectic co-chain complex SC∗(M) or the Hamil-
tonian Floer complex (with small negative slope if M is non-compact) is an invariant of M , up to
quasi-isomorphism.

4.3.1. Relation to earlier definitions in the literature. There is another formulation of the com-
patibility of Floer data, in terms of these so-called rotated cylindrical regions. Let top(C) to be
the maximal s coordinate in C (+∞ if C is positive-infinite) and bottom(C) to be the minimal s
coordinate in C (−∞ if C is negative-infinite).

Definition 15. Let (θ1, . . . , θr) be a collection of angles. Define the ith cumulative angle, for
i from 1 to r, via

(4.53) ηi :=

i∑
j=1

θj ;

or inductively via

η1 := θ1

ηi+1 := ηi + θi+1.
(4.54)

Also, define η−1 = 0.

Definition 16. The (δ-spaced) rotated cylindrical regions for an r-point angle-decorated cylin-
der (C, p1, . . . , pr) consist of the following cylindrical ends and finite cylinders:
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• The top cylinder

ε+ : [0,max(top(C)− (h1 + δ), 0)]× S1 → C

(s, t) 7→ (min(s+ h1 + δ, top(C)), t)
(4.55)

• The bottom cylinder

ε− : [min(bottom(C)− (hr − δ), 0), 0]× S1 → C

(s, t) 7→ (max(s− (hr − δ), bottom(C)), t+ ηr).

• For any 1 ≤ i ≤ r − 1 satisfying hi+1 − hi > 3δ, the ith thin part

εi : [hi+1 + δ, hi − δ]× S1 → C

(s, t) 7→ (s, t+ ηi)
(4.56)

Note that a given r-point angle-decorated cylinder may not contain the ith thin part, for a given
i ∈ [1, r − 1], and indeed may not contain any thin parts. If δ is implicit, we simply refer to above
as the rotated cylinder regions.

Now, fixing an δ, it is easy to give a necessary (but not sufficient!) condition for compatibility
with gluing:

Definition 17. We say a Floer datum (KC , JC) is is δ-adapted to (C, p1, . . . , pr,Kt, Jt) if for
any rotated cylindrical region ε : C ′ → C associated to (C, p1, . . . , pr) and δ, we have that

(4.57) ε∗(KC , JC) = (Kt, Jt).

(strictly speaking, this condition is only necessary for sufficiently large finite cylinders). If we were
to express this condition without using the rotation already built into the cylindrical region maps,
we would arrive at the following, which most closely matches [BO].

Definition 18. Let (C, p1, . . . , pr) be an r-point angle-decorated cylinder, and fix a pair (Kt, Jt)
of a time-dependent Hamiltonian and almost complex structure. Let KC and JC be a C dependent
Hamiltonian and almost complex structure. For a positive constant δ, we say that (KC , JC) is
δ-adapted to (C, p1, . . . , pr,Kt, Jt) if, at a position z = (s, t)

(Hz, Jz) = (Ht, Jt) for s > p1 + δ;

(Hz, Jz) = η∗r (Ht, Jt) = (Ht+ηr , Jt+ηr ) for s < pr − δ;
(Hz, Jz) = η∗i (Hz, Jz) if hi+1 − hi > 3δ and s ∈ [hi+1 + δ, hi − δ]

(4.58)

4.4. The circle action on the interior. Let us further now suppose that H is chosen to be
C2-small and Morse in the compact region of M̄ , with perturbation Ft equal to zero in this region.
Then it is well known that the symplectic co-chain complex SC∗(Ht) contains a copy of the Morse
complex of H|M̄ as a subcomplex; the content of this statement

An easy action argument, along with a specific choice of Hamiltonian, shows that

Lemma 11. There exists a choice of Floer data for the homotopy S1-action so that CMorse(H)
becomes a strictly trivial S1 subcomplex; meaning that the various operators δk, k ≥ 1, associated
to the S1 action strictly vanish on the subcomplex. Equivalentaly, for this choice of data, on the
subcomplex CMorse(H), the A∞ module action of C−∗(S

1) factors through the augmentation map
C−∗(S

1)→ k.

Proof. For action reasons, any Floer trajectory with asymptotics at two generators in CMorse(H)
remain in the interior of M̄ . We can choose the Hamiltonian to be autonomous and C2-small in this
region, under which it is known that any Floer trajectory between Morse critical points is in fact
a Morse trajectory. For similar reasons, for any moduli space M−k, we can choose all of the Floer
data appearing in the to be C2-small, autonomous, and Morse in this region—in fact, just equal to
H. We conclude that for x, y critical points of H, any element u in the parametrized moduli space
M−k(x, y) solves an equation that is independent of the choice of parameter ~p ∈ (S1)k × (0, 1]k−1.
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Namely, u lives in a family of solutions of dimension at least 2k− 1 (given by varying ~p), and hence
cannot be rigid. The associated operation δk, which counts rigid solutions, is therefore zero. �

For such a choice of Hamiltonian, one therefore sees that

Corollary 5. The inclusion chain map

(4.59) CMorse(H)→ SC∗(M)

lifts canonically to a chain map

(4.60) CMorse(H)[[u]]→ SC−S1(M) = SC∗(M)[[u]].

Namely, one has a map

(4.61) H∗(M)[[u]]→ SH−S1(M)

such that the associated composition

(4.62) H∗(M)→ H∗(M)[[u]]→ SH−S1(M)→ SH∗(M)

coincides with the usual map H∗(M)→ SH∗(M).

5. Cyclic open-closed maps

5.1. Open-closed moduli spaces and operations. In this section (which can be skipped
upon first read), we assemble the required notion of a Floer perturbation datum on a family of discs,
in order to repeatedly use it in geometric constructions which follow.

Let S be a disc with some boundary marked points z1, . . . , zk marked as inputs and an interior
marked point p removed, marked as either positive or negative (we consider both). We also equip
the interior marked point p with an asymptotic marker, that is a half-line τp ∈ TpS (or equivalently
an element of the unit tangent bundle, defined with respect to some metric). Call any such S =
(S, z1, . . . , zk, p, τp) an open-closed framed disc.

In addition to the notation for semi-infinite strips (3.39) - (3.40), we use the following notation
to refer to the positive and negative semi-infinite cylinder:

A+ := [0,∞)× S1(5.1)

A− := (−∞, 0]× S1(5.2)

Definition 19 (Floer datum). A Floer datum FS on a stable open-closed framed disc S consists
of the following choices on each component:

(1) A collection of strip-like and cylindrical ends S; that is maps

ε±k : Z± → S

δ±j : A± → S

all with disjoint image in S. These should be chosen so that positive strips and cylinders
map to neighborhoods of positively-labeled boundary marked points and interior marked
points respectively, and similarly for negative marked points. The cylindrical ends further
should be compatible with the asymptotic marker at the given marked point, that is

(5.3) lim
s→±∞

δ±(s, 1) = τp.

(2) For each strip-like end or cylindrical end ε±k , δ±j , a real number, wk or νj, called a weight.

(3) closed 1-form: a one-form αS satisfying dαS = 0, and (αS)|∂S = 0, restricting to wdt on
a strip-like or cylindrical end with weight w.

(ε±k )∗αS = wkdt, (δ±j )αS = νjdt
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(4) A main Hamiltonian HS : S → H(M), restricting to H
w2ψ

w on a strip-like or cylindrical
end with weight w:

(ε±k )∗HS =
H

w2
k

◦ ψwk , (δ±j )∗HS =
H

ν2
j

◦ ψνj

(5) A perturbation Hamiltonian FS, zero on each strip-like end, satisfying
• on the cylindrical ends,

(5.4) (δ±j )∗FS =
FT ◦ ψνj

ν2
j

• There are infinitely many values of the cylindrical coordinate on M such that FS is
zero at all values of the cylindrical coordinate.

(6) A boundary-shifting map ρ : ∂S̄\{marked points} → (0,∞) satisfying

(ε±k )∗ρ = wk.

(7) An almost-complex structure JS satisfying

(ε±k )∗JS = (ψwk)∗Jt.

(δ±)∗JS = (ψν)∗Jt.

To explain the perturbation Hamiltonian FS , recall that in the case of wrapped Fukaya cate-
gories, one can choose a quadratic Hamiltonian whose time-1 chords between any pair of objects is
non-degenerate. However, the time-1 orbits of such Hamiltonians come in S1-families near ∞. It
will be therefore be helpful to introduce Hamiltonian perturbation terms on cylindrical ends of our
domain in order to break the S1 symmetry of orbits.

Remark 37. For monotone Lagrangians in monotone symplectic manifolds, one can safely dire-
gard the choice of boundary-shifting map, weight (or rather, set all weights to 1), and perturbation
Hamiltonian. We also adopt the convention that the Liouville flow ψt ∼= id for all t.

Definition 20. A pair of Floer data F1
S, F2

S on S are said to be conformally equivalent if for
some constant K,

• the strip-like and cylindrical ends coincide,
• α1 = Kα2,
• ρ1 = Kρ2

• H1 = H2

K ◦ ψ
K , and

• J1 = (ψK)∗J2.
• F1 = F2

K ◦ ψ
K

Remark 38. The assumption that FS vanishes at infinitely many levels is non-essential and can
be replaced by a weak monotonicity condition,

(5.5) ∂s(δ
±
j )∗FS ≤ 0.

This can be used to define a larger class of operations than we will do here, at the expense of a more
involved proof of compactness of resulting moduli spaces; see [G3, Appendix B].

Definition 21. A Lagrangian labeling on a stable open-closed framed disc is an assignment
of an object of W to each connected boundary component of ∂S̄ − {boundary marked points}. We
denote a Lagrangian labeling by {L0, . . . , Ld−1}, where Li corresponds to the component between zi
and zi+1−modd.

Definition 22. An admissible collection of asymptotics for stable open-closed framed disc with
Lagrangian labeling is a collection {x1, . . . , xd; y} of chords xi ∈ χ(Li−1, Li−modd) and an orbit
y ∈ O.
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Definition 23. Given a stable open-closed framed disc S equipped with a Floer datum FS,
a Lagrangian labeling {L0, . . . , Ld−1, and asymptotics {x1, . . . , xd; y}, a map u : S → M satisfies
Floer’s equation for FS with boundary and asymptotics {L0, . . . , Ld−1}, {x1, . . . , xd; y} if

(5.6) (du−X ⊗ α)0,1 = 0 using the Floer data given by FS}

and u satisfies

(5.7)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

.

5.2. Non-unital open-closed maps. We begin by constructing a variant of the open-closed
map of [A] with source the non-unital Hochschild complex of (3.15), which we call the non-unital
open-closed map

(5.8) OCnu : CHnu
∗−n(F,F) −→ CF ∗(M).

This map actually has a straightforward explanation from the perspective of Remark 29. Namely,
we need to define a pair of maps

(5.9) ǑC⊕ ÔC : CH∗(F,F)⊕ CH∗(F,F)[1]→ CF ∗(M)

giving the left and right component of the map

OCnu : CHnu
∗−n(F,F) −→ SC(M),

(x, y) 7−→ ǑC(x) + ÔC(y).
(5.10)

Since the left (check) factor is a equal to the usual cyclic bar complex for Hochschild homology,

ǑC will be defined exactly as the map OC in [A] (This will be briefly recalled below), and the new

content is the map ÔC. We will define ÔC below (and recall the definition of ǑC and prove, extending
[A] that

Lemma 12. OCnu is a chain map.

Following [A], we refer to the map ǑC viewed as a map from CH∗(F,F) (the left factor of
CHnu
∗ (F,F)) as simply OC. It follows from our construction that, assuming Lemma 12,

Corollary 6. As homology level maps, [OCnu] = [OC].

Proof. By construction, the chain level map OC factors as

(5.11) CH∗−n(F,F) ⊂ CHnu
∗−n(F,F)

OCnu−→ CF ∗(M).

The first inclusion is a quasi-isomorphism by Lemma 3, since F is known to be cohomologically
unital. �

The moduli space controlling the operation ǑC, denoted

(5.12) Ř
1

d

is the (Deligne-Mumford compactification of the) abstract moduli space of discs with d boundary
positive punctures z1, . . . , zd labeled in counterclockwise order and 1 interior negative puncture pout,
with an asymptotic marker τout at pout pointing towards zd. The space (5.12) has a manifold with

corners structure, with boundary strata described in [A, §C.3] (there, the space is called R
1

d)–in
short, codimension one strata consist of disc bubbles containing any cyclic subseqeuence of k inputs
attached to an element of Ř1

d−k+1 at the relative position of this cyclic subsequence. Orient the top

stratum R1
d by trivializing it, sending [S] to the unit disc representative S with zd and pout fixed
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at 1 and 0, and taking the orientation induced by the (angular) positions of the remaining marked
points:

(5.13) − dz1 ∧ · · · ∧ dzd−1.

Figure 1. A representative of an element of the moduli space Ř1
4 with special

points at 0 (output), −i.

The moduli space controlling the new map ÔC is nearly identical to Ř1
d, but there additional

freedom in the direction of the asymptotic marker at the interior puncture pout. The top (open)
stratum is easiest to define: let

(5.14) R
1,free
d

be the moduli space of discs with d positive boundary punctures and one interior negative puncture
as in Ř1

d, but with the asymptotic marker τout pointing anywhere between z1 and zd.

Remark 39. There is a delicate point in naively compactifying R
1,free
d : on any formerly codi-

mension 1 stratum in which z1 and zd bubble off, the position of τout becomes fixed too, and
so the relevant stratum actually should have codimension 2 (and hence does not contribute to the

codimension-1 boundary equation for ÔC. Moreoever, there is no nice corner chart near this stratum).
For technical convenience, we pass to an alternate, larger (blown-up) model for the compactification
in which these strata have codimension 1 but consist of degenerate contributions.

In light of Remark 39, we use (5.14) as motivation and instead define

(5.15) R̂1
d

to be the abstract moduli space of discs with d + 1 boundary punctures zf , z1, . . . , zd and an
interior puncture zout with asymptotic marker τout pointing towards the boundary point zf , modulo
automorphism. We mark zf as “auxiliary,” but otherwise the space is abstractly isomorphic to

Ř1
d+1. Identifying R̂1

d with the space of unit discs with zout and zf fixed at 1 and 0, the remaining
(angular) positions of z1, . . . , zd determine an orientation

(5.16) − dz1 ∧ · · · ∧ dzd.

The forgetful map

(5.17) πf : R̂1
d → R

1,free
d

puts back in the point zf and forgets it. Since the point zf is recoverable from the direction of the
asymptotic marker at zout,
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Figure 2. A representative of an element of the moduli space R1
4,free and the

corresponding element of R̂1
4.

Lemma 13. πf is a diffeomorphism.

The perspective of the former space (5.15) gives us a model for the compactification

(5.18) R
1,free

d

as the ordinary Deligne-Mumford compactification

(5.19) R̂
1

d.

As a manifold with corners, (5.19) is equal to the compactification Ř
1

d+1, except from the point of
view of assigning Floer datum, as we will be forgetting the point zf instead of fixing asymptotics
for it. It is convenient therefore to name components of strata containing zf differently. At any
stratum:

• we treat the main component (containing zout and k boundary marked points) as belonging

to R̂
1

k−1 if it contains zf and Ř
1

k otherwise; and
• If the ith boundary marked point of any non-main component was zf , we view it as an

element of Rk,fi , the space of discs with 1 output and k input marked points removed from
the boundary, with the ith point marked as “forgotten,” constructed in Appendix A.2.
• We treat any other non-main component as belonging to Rk as usual.

Thus, the codimension-1 boundary of the Deligne-Mumford compactification is covered by the nat-
ural inclusions of the following strata

R
m ×i R̂

1

d−m+1 1 ≤ i < d−m+ 1(5.20)

R
m,fk ×d−m+1 Ř

1

d−m+1 1 ≤ j ≤ m, 1 ≤ k ≤ m(5.21)

where the notation ×j means that the output of the first component is identified with the jth
boundary input of the second.

The forgetful map πf extends to a map πf from the compactification R̂
1

d as follows: we call

a component T of a representative S of R
1

d the main component if it contains the interior marked
point, and the secondary component if its output is attached to the main component. Then, πf puts
the auxiliary point zf back in, eliminates any component which is not main or secondary which has
only one non-auxiliary marked point p, and labels the positive marked point below this component

by p. Given a representative S of R̂
1

d, we call πf (S) the associated reduced surface. We will study
maps from the associated reduced surfaces πf (S), parametrized by S. To this end, we define a Floer

datum on a stable disc S in R̂
1

d to consist of a Floer datum for the underlying reduced surface πf (S).
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As a prerequesite to the forthcoming inductive choices, in Appendix A.2 we describe an inductive
construction of Floer data for the moduli space of discs with a forgotten point Rd,fi .

Definition 24. A universal and consistent choice of Floer data for the non-unital open-closed
map is inductive set of choices (DǑC,DÔC

) for Floer data for each d ≥ 1 and every representative

S ∈ Ř
1

d, T ∈ R̂
1

d, varying smoothly over each of these moduli spaces, whose restriction to a boundary
stratum is conformally equivalent to a product of Floer data coming from lower dimensional moduli
spaces. Near the boundary strata, with regards to standard previously chosen gluing coordinates, this
choice agrees to infinite order with the Floer data obtained by gluing. In particular, as described in
Appendix A.2,

the choice of Floer datum on strata containing Rd,fi components

should be constant along fibers of the forgetful map Rd,fi → Rd−1.
(5.22)

Lemma 14. Universal and consistent choices of Floer data for the non-unital open-closed map
exist.

Proof. As usual, this is an inductive argument in d. For a given d, one first chooses a Floer

datum extending the (well-defined) choices imposed on boundary strata by consistency, first for Ř
1

d

and then for R̂
1

d (as the latter space contains the former space in its boundary strata). Contractibility
of the space of choices ensures that at each stage compatible choices exist.

�

Fixing a universal and consistent choice and Floer data, we obtain, for any d-tuple of Lagrangians
L0, . . . , Ld−1, and asympotic conditions

~x = (xd, . . . , x1), xi ∈ χ(Li−1, Li−modd)

yout ∈ O
(5.23)

a pair of moduli spaces

Ř1
d(yout; ~x)(5.24)

R̂1
d(yout; ~x),(5.25)

of parametrized families of solutions to Floer’s equation

{(S, u)|S ∈ R1
d : u : S →M, (du−X ⊗ α)0,1 = 0 using the Floer data given by DǑC(S)}(5.26)

{(S, u)|S ∈ R̂1
d, u : πf (S)→M |(du−X ⊗ α)0,1 = 0 using the Floer datum given by D

ÔC
(S)}

(5.27)

satisfying asymptotic and moving boundary conditions (in either case)

(5.28)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

.

Construct the usual Gromov-type bordification Ř
1

d(yout; ~x), R̂
1

d(yout; ~x) by allowing semi-stable

breakings, as well as maps from strata corresponding to the boundary strata of Ř
1

d and R̂
1

d.

Lemma 15 (Transversality, index calculations, and compactness). For generic choices of Floer
data, the Gromov-type compactifications

Ř
1

d(yout; ~x);(5.29)

R̂
1

d(yout; ~x),(5.30)
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are smooth compact manifolds of the following dimensions respectively:

deg(yout)− n+ d− 1−
d∑
k=1

deg(xk);(5.31)

deg(yout)− n+ d−
d∑
k=1

deg(xk).(5.32)

For deg(yout) = d−n−1+
∑d
k=1 deg(xk) or deg(yout) = d−n+

∑d
k=1 deg(xk) respectively, each

element of u ∈ Ř
1

d(yout; ~x) or u ∈ R̂
1

d(yout; ~x) respectively is rigid and gives, using the fixed orien-
tations of moduli spaces of domains (5.13)-(5.16) and [A, Lemma C.4], isomorphisms of orientation
lines

(Ř1
d)u : oxd ⊗ · · · ⊗ ox1

→ oyout(5.33)

(R̂1
d)u : oxd ⊗ · · · ⊗ ox1 → oyout .(5.34)

These isomorphisms in turn define the |oyout |k component of the check and hat components of the
non-unital open-closed map with d inputs in the lines |oxd |k, . . . , |ox1

|k, up to a sign twist:

ǑCd([xd]⊗ · ⊗ [x1]) :=∑
deg(y)=n−d+1+

∑
deg(xi)

∑
u∈Ř

d

1(y;xd,...,x1)

(−1)?̌d(Ř1
d)u([xd], . . . , [x1]),

?̌d := deg(xd) +

d∑
k=1

k deg(xk)

(5.35)

ÔCd([xd], . . . , [x1]) :=
∑

deg(yout)=d−n+
∑

deg(xk)

∑
u∈R̂

1

d(yout;~x)

(−1)?̂d(R̂1
d)u([xd], . . . , [x1]),

?̂d :=

d∑
i=1

i · deg(xi).

(5.36)

By analyzing the boundary of one-dimensial components of the moduli spaces Ř
1

d(yout; ~x), the
consistency condition imposed on Floer data, and a sign analysis, it was proven in [A] that

Lemma 16 ([A], Lemma 5.4). OC := ǑC is a chain map of degree n; that is (−1)ndCF ◦ ǑC =

ǑC ◦ b.

Similarly, we prove the following, completing the proof of Lemma 12:

Lemma 17. The following equation holds:

(5.37) (−1)ndCF ◦ ÔC = ǑC ◦ d∧∨ + ÔC ◦ b′

Proof. The consistency condition imposed on Floer data implies that the codimension 1 bound-

ary of the Gromov bordification Ř
1

d(y; ~x) is covered by the images of the natural inclusions of the
moduli spaces of maps coming from the boundary strata (5.20), (5.21) along with semi-stable break-
ings

R̂
1

d(y1; ~x)×M(yout; y1)→ ∂Ř
1

d(yout; ~x)(5.38)

R
1
(x1;x)× R̂

1

d(yout; ~̃x)→ ∂Ř
1

d(yout; ~x), .(5.39)

Let µd,i be the operation associated to the space of discs with ith point marked as forgotten Rd,fi ,
which is described in detail in Appendix A.2. µd,i takes a composable sequence of d − 1 inputs,
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separated into an i − 1 tuple and a d − i tuple; in line with Remark 29 we will use the suggestive
notation

(5.40) µd(xd, . . . , xi+1, e
+, xi−1, . . . , x1) := µd,i(xd, . . . , xi+1;xi−1, . . . , x1).

8 Then, up to sign, by the standard codimension-1 boundary principle for Floer-theoretic operations,
we have shown that

0 =dCF ÔC(xd, . . . , x1)−
∑
i,j

(−1)z
i
1ÔC(xd ⊗ · · · ⊗ xi+j+1 ⊗ µj(xi+j , . . . , xi+1)⊗ xi ⊗ · · · ⊗ x1)

−
∑
i,j,k

(−1)]
k
j ǑC(µj+k+1(xj , . . . , x1, e

+, xd, . . . , xd−k+1)⊗ xd−k ⊗ · · · ⊗ xj+1).

(5.41)

with desired signs

znm =

n∑
j=m

||xi||(5.42)

]kj = zj1z
d
j+1 +zdj+1 + 1(5.43)

However, as shown in Appendix A.2,

(5.44) µj+k+1(xj , . . . , x1, e
+, xd, . . . , xd−k+1) =


x1 j = 1, k = 0

(−1)|xd|xd j = 0, k = 1

0 otherwise

(in this manner, e+, though a formal element, behaves as a strict unit). So if (5.41) held, it would
follow that

dCF ◦ ÔC(xd ⊗ · · · ⊗ x1) = (−1)||x1||zd2+zd2+1OC(x1 ⊗ xd ⊗ · · · ⊗ x2)

+ (−1)|xd|+zd1+1ǑC(xd ⊗ · · · ⊗ x1) + ÔC ◦ b′(xd ⊗ · · · ⊗ x1)

= ǑC((−1)z
d
1+||xd||(1− t)(xd ⊗ · · · ⊗ x1)) + ÔC ◦ b′(xd ⊗ · · · ⊗ x1).

=
(
ǑC ◦ d∧∨ + ÔC ◦ b′

)
◦ (xd ⊗ · · · ⊗ x1).

(5.45)

So we are done if we establish the signs are exactly (5.42)-(5.43).
Using the notation

(5.46) OC(e+ ⊗ xd ⊗ · · · ⊗ x1) := ÔC(xd ⊗ · · · ⊗ x1),

where again e+ is simply a formal symbol referring to the position of the auxiliary (forgotten) input
point, we observe that the equation (5.41) is exactly the equation for OC being a chain map on
inputs of the form (e+⊗xd⊗ · · · ⊗x1) (where we treat an “e+” input as an auxiliary unconstrained

point on our domain). The sign verification therefore follows from that of ǑC being a chain map

(in [A, Lemma 5.4]), for we have used identical orientations on the abstract moduli space R̂1
d as on

Ř1
d+1, and on Rd,fi as on Rd, and we can even insert a formal degree zero orientation line oe+ into

the procedure for orienting moduli spaces of open-closed maps (see [A, §C.6]), corresponding to the
marked point xf . Note that oe+ , being of degree zero, commutes with everything, and is just used
as a placeholder as if we had an asymptotic condition at xf . �

Proof of Lemma 12. Given that ǑC is already known to be a chain map by [A, Lemma 5.4],

repeated as Lemma 16 above, the new part to check is that the dCF ◦ ÔC = ǑCd∧∨ + ÔC ◦ b′. This
is the content of Lemma 17 above. �

8In fact, when the Fukaya category is equipped with homotopy units, one can ensure that there is a strict unit
element e+ in each self-hom space, for which µk with an e+ element admits a geometric description as above. See

e.g., [FOOO] or [G2].
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5.3. An auxiliary operation. It will be technically convenient to define an auxiliary operation

(5.47) OCS
1

: CH∗−n(F,F)→ CH∗+1(M)

from the left factor of the non-unital Hochschild complex to Floer co-chains, in which the asymptotic
marker τout varies freely around the circle. This operation is more easily comparable to the BV

operator on Floer cohomology, and moreover, we will show that OCS
1

(and ÔC) can be chosen to
satisfy the following crucial identity:

Proposition 7. There is an equality of chain level operations:

(5.48) OCS
1

= ÔC ◦Bnu.

To define (5.47), let

(5.49) RS
1

d

be the abstract moduli space of discs with d boundary positive punctures z1, . . . , zd labeled in
counterclockwise order and 1 interior negative puncture pout, with an asymptotic marker τout at
pout (or choice of real half line in TpoutD) which is free to vary. Equivalently,

(5.49) is the space of discs with z1, . . . , zd and pout as before, and an extra auxiliary

interior marked point p1 such that, for a representative with (pout, z1) fixed at (0,−i),

|p1| =
1

2
, and the asymptotic marker τout points towards p1.

(5.50)

Abstractly,

(5.51) RS
1

d = S1 × R1
d,

a fact which we use to fix an orientation on the top component of (5.51). The Deligne-Mumford
type compactification thus has a simple description

(5.52) RS
1

d = R1
d × S1.

Given an element S of RS
1

d and a choice of marked point zi on the boundary of S, we say say that
τout points at zi, if, when S is reparametrized so that z1 fixed at −i and pout fixed at 0, the vector
τout is tangent to the straight line from pout to zi. Equivalently, for this representative, pout, p1, and
zi are collinear. For each i, the locus where τout points at zi forms a codimension 1 submanifold,
denoted

(5.53) R
S1
i

d .

The notion compactifies well; if zi is not on the main component of (5.51) we say τout points at zi if

it points at the root of the bubble tree zi is on. This compactified locus R
S1,i
d can be identified on

the nose with R
1

d via the map

(5.54) τi : RS
1,i

d → R
1

d

which cyclically permutes the labels of the boundary marked points so that zi is now labeled z0.
In a similar fashion, we have an invariant notion of what it means for τout to point between zi

and zi+1; this is a codimension 0 submanifold with corners of (5.51), denoted

(5.55) R
S1
i,i+1

d .

The compactification has some components that are codimension 1 submanifolds with corners of
(5.51), when zi and zi+1 both lie on a bubble tree.

Finally, there is a free Zd action generated by the map

(5.56) κ : RS
1

d → RS
1

d
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which cyclically permutes the labels of the boundary marked points; for concreteness, κ changes the
label zi to zi+1 for i < d, and zd to z1. Note that if, on a given S, τout points between zi and zi+1,
then on κ(S), τout points between zi+1 mod d and zi+2 mod d.

We now choose Floer perturbation data for this family of moduli spaces; in fact, it will be helpful
to re-choose Floer data for the moduli spaces appearing in the non-unital open-closed map to have
extra compatibility. To that end, a BV compatible universal and consistent Floer datum for the
non-unital open-closed operation is an inductive choice (DǑC,DÔC

,DS1) of Floer data where DǑC

and D
ÔC

is a universal and consistent choice of Floer data for the non-unital open-closed map as

before, and DS1 consists of, for each d ≥ 1 and every representative S ∈ RS
1

d , varying smoothly over
the moduli space, whose restriction to a boundary stratum is conformally equivalent to a product of
Floer data coming from lower dimensional moduli spaces. Near the boundary strata, with regards
to standard previously chosen gluing coordinates, this choice agrees to infinite order with the Floer
data obtained by gluing. Moreover, there are two additional inductive constraints:

On the codimension-1 loci R
S1
i

d where τout points at zi, the Floer datum(5.57)

should agree with the pullback by τi of the existing Floer datum

for the (check) open-closed map.

The Floer datum should be κ-equivariant, where κ is the map (5.56).(5.58)

Also, there is a final a posteriori constraint on the Floer data for the non-unital open-closed map

D
ÔC

; for S ∈ R̂
1

d:

the Floer datum on the main component S0 of πf (S) should coincide with the

existing datum chosen on S0 ∈ R
1,free
d ⊂ RS

1

d .
(5.59)

By an inductive argument as before, universal and consistent choices of Floer data exist (though

now we choose the data for RS
1

d prior to choosing that of R̂
1

d).
In fact, the condition (5.59) specifies the Floer datum entirely. We then observe that (5.22) is

compatibile with consistency and the condition (5.57).
The second constraint, (5.58) is compatible with the first (5.57) (which is visibly an equivariant

condition), and generally does not impose a problem, as the action generated by κ is free. Specifically,
one can pick a Floer datum first for surfaces S with τout pointing between zd and z1, and then use
equivariance to determine general τout (there is a fact to check that the Floer datum can be chosen
to be just smooth and not piecewise smooth, but this too is straightforward).

Fixing a universal and consistent choice and Floer data, we again obtain, for any d-tuple of
Lagrangians L0, . . . , Ld−1, and asympotics ~x = (xd, . . . , x1) (xi ∈ χ(Li, Li+1 mod d)), yout ∈ O, a
moduli space

(5.60) RS
1

d (yout; ~x),

of parametrized families of solutions to Floer’s equation

(5.61) {(S, u)|S ∈ RS
1

d , u : πf (S)→M |(du−X ⊗ α)0,1 = 0}

satisfying asymptotic and moving boundary conditions

(5.62)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

.

Generically the Gromov compactification

(5.63) R
S1

d (yout; ~x),
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is a smooth compact manifold of dimension

(5.64) deg(yout)− n+ d−
d∑
k=1

deg(xk).

When this dimension is 0, i.e., deg(yout) = d− n+
∑d
k=1 deg(xk), each u ∈ R

S1

d (yout; ~x) is rigid and
gives by the orientation from (5.51) and [A, Lemma C.4] an isomorphism of orientation lines

(5.65) (RS
1

d )u : oxd ⊗ · · · ⊗ ox1
→ oyout ,

which defines the |oyout |k component of the S1 open-closed map with d inputs in the lines |oxd |k, . . . , |ox1 |k,
up to a sign twist:

OCS
1

([xd], . . . , [x1]) :=
∑

deg(yout)=d−n+
∑

deg(xk)

∑
u∈RS

1

d (yout;~x)

(−1)♣d(RS
1

d )u([xd], . . . , [x1]),

♣d =

d∑
i=1

(i+ 1) · deg(xi) + deg(xd) + d− 1

(5.66)

The proof of Proposition 7, which equates OCS
1

with OC ◦Bnu, has two steps. First, we decompose

the moduli space RS
1

d into sectors in which τout points between a pair of adjacent boundary marked

points. It will follow that the sum of the corresponding “sector operations” is exactly OCS
1

. The

sector operations in turn can be compared to ÔC via cyclically permuting inputs and an orientation
analysis.

We begin by defining the relevant sector operations: For i ∈ Z/(d+ 1)Z, define

(5.67) R̂1
d,τi

to be the abstract moduli space of discs with d + 1 boundary punctures z1, . . . , zi, zf , zi+1, . . . , zd
arranged in clockwise order and interior puncture zout with asymptotic marker pointing towards the
boundary point zf , which is also marked as “auxiliary.” There is a bijection

(5.68) τi : R̂1
d,τi ' R̂1

d

given by cyclically permuting labels, which induces a model for the compactification R̂1
d,τi

. However,
we will use a different orientation than the one induced by pullback: on a slice with fixed position
of zd and zout, we take the volume form

(5.69) dz1 ∧ · · · ∧ dzd−1 ∧ dzf .

By construction, the induced “forgetful map”

(5.70) πif : R̂1
d,τi → RS

1
i,i+1 ,

is an oriented diffeomorphism that extends to a map between compactifications (note as before that
strictly speaking this map does not forget any information, at least on the open locus).

Remark 40. In the case i = 0, note that this orientation agrees with the previously chosen

orientation (5.16) on R̂1
d. To see this, note that we previously defined the orientation on R̂1

d in terms
of a different slice of the group action. To compare the forms dz1 ∧ · · · ∧ dzd−1 ∧ dzf (coming from
the slice with fixed zd and zout) and −dz1 ∧ · · · ∧ dzd (coming from the slice with fixed zf and zout),
note that either orientation is induced by the following procedure:

• fix an orientation on the space of discs as above with fixed position of zout (but not zf or
zd): we shall fix the canonical orientation dz1 ∧ · · · ∧ dzd ∧ dzf ;

• fix a choice of trivalizing vector field for the remaining S1 action on this space of discs with
fixed zout: we shall fix S = (−∂zf − ∂z1 − · · · − ∂zd); and
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• fix a convention for contracting orientation forms along slices of the action: to determine
the orientation on a slice of an S1 action, we will contract the orientation on the original
space on the right by the trivializing vector field.

Moreoever, this data induces an orientation on the quotient by the S1 action, and also an oriented
isomorphism between the induced orientation on any slice and that of the quotient. It follows that
on the quotient, the orientation −dz1∧· · ·∧dzd (from the slice where zf is fixed), and the orientation
dz1 ∧ · · · ∧ dzd−1 ∧ dzf (from the slice where zd is fixed) agree. We conclude these two orientations
agree. The author thanks Nick Sheridan for relevant discussions about orientations of moduli spaces.

Choose as a Floer datum for R1
d,τi

the pulled back Floer datum from R̂1
d via (5.68); it auto-

matically then exists and is universal and consistent as desired. Fixing this choice, for any d-tuple
of Lagrangians L0, . . . , Ld−1, and asympotic conditions ~x = (xd, . . . , x1), xi ∈ χ(Li, Li+1 mod d),
yout ∈ O we obtain a moduli space

(5.71) R1
d,τi(yout; ~x) = R̂1

d(yout; (xi−1, . . . , x1, xd, . . . , xi))

of parametrized families of solutions to Floer’s equation

(5.72) {(S, u)|S ∈ R̂1
d, u : πf (S)→M |(du−X ⊗ α)0,1 = 0 using the Floer datum for πf (S)}

satisfying asymptotic and moving boundary conditions

(5.73)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

and its Gromov-type compactification

(5.74) R
1

d,τi(yout; ~x) := R̂1
d(yout; (xi, . . . , x1, xd, . . . , xi+1)),

which is a smooth compact manifold of dimension deg(yout)− n+ d−
∑d
j=0 deg(xj).

For deg(yout) = d−n+
∑d
j=1 deg(xj), each element u ∈ R

1

d,τi(yout; ~x) is rigid and gives by (5.69)

and [A, Lemma C.4] an isomorphism of orientation lines

(5.75) (R1
d,τi)u : oxd ⊗ · · · ⊗ ox1 → oyout ,

which defines the |oyout |k component of an operation ÔCd,τi with d inputs in the lines |oxd |k, . . . , |ox1
|k,

up to the following sign twist:

ÔCd,τi([xd], . . . , [x1]) :=
∑

deg(yout)=d−n+
∑

deg(xk)

∑
u∈R̂

1

d,τi
(yout;~x)

(−1)♣d(R̂1
d,τi)u([xd], . . . , [x1]),

♣d =

d∑
i=1

(i+ 1) · deg(xi) + deg(xd) + d− 1.

(5.76)

Lemma 18. As chain level operations,

(5.77) OCS
1

=
∑
i

ÔCd,τi

Proof. For each d, there is an embedding of abstract moduli spaces

(5.78)
∐
i

R̂1
d,τi

∐
i π

i
f−→
∐
i

R
S1
i,i+1

d ↪→ RS
1

d ;

see Figure 3.
By construction, this map is compatible with Floer data (this uses the fact that the Floer data

on RS
1
i,i+1 agrees with the data on R̂1

d via the reshuffling map κ−i by (5.58)), and covers all but
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Figure 3. The diffeomorphism between R̂1
2,τ0 ∪ R̂1

2,τ1 and the open dense part of

RS
1

2 given by R
S1
0,1

2 ∪ R
S1
1,2

2 . The former spaces can in turn be compared to R̂1
2 via

cyclic permutation of labels.

a codimension 1 locus in the target. Since after perturbation zero-dimensional solutions to Floer’s
equation can be chosen to come from the complement of any codimension 1 locus in the source
abstract moduli space, we conclude that the two operations in the Proposition, which arise from
either side of (5.78), are identical up to sign. To fix the signs, note that (5.78) is in fact an oriented

embedding, and all the sign twists defining the operations ÔCd,τi are chosen to be compatible with

the sign twist in the operation OCS
1

. �

Next, because the Floer data used in the constructions are identical, ÔCd,τi(xd⊗· · ·⊗x1) agrees

with ÔC(xi⊗ · · · ⊗ x1⊗ xd⊗ · · · ⊗ xi+1) up to a sign difference coming from orientations of abstract
moduli spaces, cyclically reordering inputs, and sign twists. The following proposition computes the
sign difference, and hence completes the proof of Proposition 7:

Lemma 19. As a signed operation,

ÔCd,τi(xd ⊗ · · · ⊗ x1) = ÔC
d
(snu(ti(xd ⊗ · · ·x1)))(5.79)

where snu is the operation (3.24) arising from changing a check term to a hat term with a sign twist.

Proof. It is evident that ÔCd,τi agrees with ÔCd ◦ snu ◦ ti up to sign, as the Floer data used
in the two constructions are identical. By an inductive argument it suffices to verify the following
equalities of signed operations:

ÔCd,τ0 = ÔCd ◦ snu,(5.80)

ÔCd,τ1 = ÔCd,τ0 ◦ t;(5.81)

the remaining sign changes are entirely incremental. For the equality (5.80), we simply note that the

signs appearing in the operations ÔCd,τ0([xd], . . . , [x1]) and ÔCd([xd], . . . , [x1]) differ in the following
fashions:

• The abstract orientations on the moduli space of domains agree, as per Remark 40.
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• The difference in sign twists is given by ♣d− ?̂d =
∑d
i=1 |xi|+ |xd|+d−1 = (

∑d
i=1 ||xi||)+

1 + |xd| = zd1 + ||xd||.
All together, the parity of difference in signs is zd1 + ||xd|| which accounts for the sign in the

algebraic operation snu (see (3.24)); this verifies (5.80).
Next, the sign difference between the two operations in the equality (5.81) is a sum of three

contributions:

• The two orientations of abstract moduli spaces from (on the slice where zf and zout are
fixed; see Remark 40) −dz1 ∧ · · · ∧ dzd to dz2 ∧ · · · ∧ dzd ∧ dz1 differ by a sign change of
parity

d− 1.

• For a given collection of inputs, the change in sign twisting data from ♣d =
∑d
i=1(i+ 1) ·

|xi|+ |xd|+d−1 to
∑d−1
i=1 (i+1)|xi+1|+(d+1)|x1|+ |x1|+d−1 =

∑d
i=2 i|xi|+d|x1|+d−1

(♣d for the sequence (x2, . . . , xd, x1)) induces a sign change of parity

d∑
i=2

|xi|+|xd|+d|x1| =
d∑
i=1

|xi|+|xd|+(d−1)|x1| =
d∑
i=1

||xi||+(d−1)||x1||+||xd|| = zd1+(d−1)||x1||+||xd||.

• Finally, the re-ordering of determinant lines of the inputs induces a sign change of parity

|x1| · (
d∑
i=2

|xi|) = ||x1|| · (
d∑
i=2

||xi||)+

d∑
i=2

||xi||+(d−1)||x1||+(d−1) = ||x1||zd2 +zd1 +d||x1||+(d−1)

The cumulative sign parity is congruent mod 2 to

||x1||zd2 + ||x1||+ ||xd||,

which is precisely the sign appearing in t (see (3.11)). This verifies (5.81).
�

5.4. Compatibility of homology-level BV operators. Before diving into the statement of
chain-level equivariance, we prove a homology-level statement. The below Theorem is insufficient
for studying, say, equivariant homology groups, but may be of independent interest.

Theorem 5. The homology level open-closed map [OCnu] intertwines the Hochchild and sym-
plectic cohomology BV operators, that is

(5.82) [OCnu] ◦ [Bnu] = [δ1] ◦ [OCnu].

Theorem 5 is an immediate consequence of the following chain-level statement:

Proposition 8. The following diagram homotopy commutes:

(5.83) CH∗−n(F,F)

ǑC

��

� � ι
∼
// CHnu

∗−n(F,F)
Bnu // CHnu

∗−n−1(F,F)

OCnu

��
CF ∗(M)

δ1 // CF ∗−1(M).

where ι is the inclusion onto the left factor, which is a quasi-isomorphism by Lemma 3. More

precisely, there exists an operation ǑC
1

: CH∗−n(F,F)→ CF ∗−2(M) satisfying

(5.84) (−1)n+1dǑC
1

+ ǑC
1
b = ÔCBnuι− (−1)nδ1ǑC.

Proof of Theorem 5. Proposition 8 immediately implies that [δ1]◦ [ǑC] = [OCnu]◦ [Bnu]◦ [ι]
where ι : CH∗−n(F,F) → CHnu

∗−n(F,F) is the inclusion of chain complexes. But by Lemma 3, [ι] is

an isomorphism and by Corollary 6 [ǑC] = [OCnu]. �
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To define ǑC
1
, consider

(5.85) 1Ř
1
d+1,

the moduli space of discs with with d + 1 positive boundary marked points z0, . . . , zd labeled in
counterclockwise order, 1 interior negative puncture zout equipped with an asymptotic marker, and
1 additional interior marked points p1 (without an asymptotic marker), marked as auxiliary. Also,
choosing a representative of an element this moduli space which fixes z0 at 1 and zout at 0 on the
unit disc, p1 should lie within a circle of radius 1

2 :

(5.86) 0 < |p1| <
1

2
.

Using the above representative, one can talk about the angle, or argument of p1

(5.87) θi := arg(pi).

We require that with respect to the above representative,

(5.88) the asymptotic marker on zout points in the direction θ1.

For every representative S ∈ 1Ř
1
d+1,

fix a negative cylindrical end around zout not containing p1, compatible with the

direction of the asymptotic marker, or equivalently compatible with the angle θ1.
(5.89)

We orient (5.85) as follows: pick, on a slice of the automorphism action which fixes the position of
zd at 1 and zout at 0, the volume form

(5.90) − r1dz1 ∧ dz2 ∧ · · · ∧ dzd−1 ∧ dr1 ∧ dθ1

The compactification of (5.85) is a real blow-up of the ordinary Deligne-Mumford compactification,
in the sense of [KSV] (see [SS] for a first discussion in the context of Floer theory).

The result of this discussion is that the codimension 1 boundary of the compactified check moduli

space 1Ř
1

d+1 is covered by the images of the natural inclusions of the following strata:

Rs × 1Ř
1

d−s+2(5.91)

Ř
1

d ×M1(5.92)

Ř
S1

d+1(5.93)

The stratum (5.93) describes the locus which |p1| = 1
2 , which is exactly the locus we defined to be

the auxiliary operation RS
1

d+1. The strata (5.91)-(5.92) have manifold with corners structure given
by standard local gluing maps using fixed choices of strip-like ends near the boundary. For (5.91)
this is standard, and for (5.92), the local gluing map uses the cylindrical ends (5.89) and (4.35) (in
other words, one rotates the 1-pointed angle cylinder by an amount commensurate to the angle of
the marked point zd on the disk before gluing).

Definition 25. A universal and consistent Floer datum for the BV homotopy, is an inductive

choice, for every d ≥ 1, of Floer data for every representative S0 ∈ 1Ř
1

d+1, varying smoothly over
moduli space, whose restriction to the boundary stratum is conformally equivalent to a product of
Floer data coming from lower dimensional moduli spaces. Near the nodal boundary strata, with
regards to gluing coordinates, this choice agrees to infinite order with the Floer data obtained by
gluing.

Proposition 9. Universal and conformally consistent choices of Floer data for the BV homo-
topy exist.
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Fixing a universal and consistent choice of Floer data for the cyclic open-closed map, we obtain,
for any d-tuple of Lagrangians L0, . . . , Ld−1, and asympotic conditions

~x = (xd, . . . , x1), xi ∈ χ(Li, Li+1−modd)

yout ∈ O
(5.94)

a compactified moduli space

(5.95) 1Ř
1

d+1(yout, ~x)

of maps into M with source an arbitrary element S of the moduli space (5.85), satisfying Floer’s
equation using the Floer datum chosen for the given S, and asymptotic and moving boundary
conditions

(5.96)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

.

Proposition 10. For generic choices of Floer data, the Gromov-type compactifications (5.95)
is a smooth compact manifold of dimension

(5.97) dim(1Ř
1

d+1(yout, ~x)) = deg(yout)− n+ d+ 1−
d∑
i=0

deg(xi)

For rigid elements u in the moduli spaces (5.95), (which occurs for asymptotics (y, ~x) satisfying
(5.97) = 0), the orientations (5.90), and [A, Lemma C.4] induce isomorphisms of orientation lines

(5.98) (1Ř
1
d)u : oxd ⊗ · · · ⊗ ox1

→ oy

Summing the application of these isomorphisms over all u defines the |oyout |k component of the

operation ǑC
1
, up to a sign twist:

(5.99) ǑC
1
([xd], . . . , [x1]) :=

∑
deg(yout)=d−n−2k+1+

∑
deg(xi)

∑
u∈kŘ

1

d(yout;~x)

(−1)?̌d(kŘ
1
d)u([xd], . . . , [x1]);

where the sign is given by

(5.100) ?̌d = deg(xd) +
∑
i

i · deg(xi).

A codimension 1 analysis of the moduli spaces (5.95) reveals:

Proposition 11. The following equation is satisfied:

(5.101) (−1)nδ1ǑC + (−1)ndǑC
1

= OCS
1

+ ǑC
1
b

Proof. In codimension 1, the boundary of (5.95) is covered by the following types of strata:

• spaces of maps with domain lying on the codimension 1 boundary of the moduli space, i.e.,
in (5.91)-(5.93)

• semi-stable breakings, namely those of the form

1Ř
1

d(y1; ~x)×M(yout; y1)(5.102)

R
1
(x1;x)× 1Ř

1

d(yout; ~̃x)(5.103)

All together, this implies, up to signs, that

(5.104) δ1ǑC
1

+ dOC = OCS
1

+ ǑC
1
b.
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(5.104) is of course a shorthand for saying, for a tuple of d cyclically composable morphisms
xd, . . . , x1, that

1∑
i=0

δiǑC
k−i
d (xd, . . . , x1) = OCS

1

d (xd, . . . , x1) +

k−1∑
i=1

ǑC
k,i,i+1

d (xd, . . . , x1)

+
∑
i,s

(−1)z
s
1ǑC

1

d−i+1(xd, . . . , xs+i+1, µ
i(xs+i, . . . , xs+1), xs, . . . , x1)

+
∑
i,j

(−1)]
i
j ǑC

1
(µi+j+1(xi, . . . , x1, xd, . . . , xd−j), xd−j−1, . . . , xi+1).

(5.105)

Thus, it suffices to verify that the signs coming from the codimension 1 boundary are exactly

those appearing in (5.104). (in particular, that the terms in, for instance, ǑC
1
b appear with the

right sign).
Let us recall broadly how the signs are computed. For any operator g defined above such as OC,

OCS
1

, µ, d, δ1 etc., we let gut denote the untwisted version of the same operator, e.g., the operator
whose matrix coefficients come from the induced isomorphism on orientation lines, without any sign

twists by the degree of the inputs. So for instance µd(xd, . . . , x1) = (−1)
∑d
i=1 i deg(xi)µdut(xd, . . . , x1)

and so on. The methods described in [S5, Prop. 12.3] and elaborated upon in [A, §C.3, Lemma 5.3]
and [G2, §B], when applied to the boundary of the 1-dimensional component of the moduli space

of maps, Ř
1

d+1(yout, ~x)), imply the following signed equality:

0 = dutǑC
1

ut(xd, . . . , x1) + (δ1)utǑCut(xd, . . . , x1)

− OCS
1

ut (xd, . . . , x1) + (−1)fdǑC
1
b(xd, . . . , x1)

(5.106)

where

(5.107) fd :=
∑
i

(i+ 1) deg(xi) + deg(xd) = ?̌d +zd − d.

is an auxiliary sign.
To explain this equation (5.106), we note first that the signs appearing in all terms but the last

are simply induced by the boundary orientation on the moduli space of domains. The sign appearing
in the first term also follows from a standard boundary orientation analysis for Floer cylinders, which
we omit (but see e.g., [S5, (12.19-12.20)] for a version close in spirit). The signs for the first two

terms are also exactly as in Lemma 10. Finally, in the last term, the sign (−1)fdǑC
1
b(xd⊗ · · · ⊗ x1)

(compare [S5, (12.25)] [G2, (B.59)]) appears as a cumulative sum of

• the sign twists which turn the untwisted operations ǑC
1

ut and µsut into the usual operations

ǑC
1

and µs;
• the Koszul sign appearing in the Hochschild differential b; and

• the boundary orientation sign appearing in the relevant (untwisted) term of ǑC
1
b, for

instance ǑC
1

ut(xd, . . . , xn+m+1, µ
m
ut(xn+m, . . . , xn+1)xn, . . . , x1), which itself is as a sum of

two different contributions:
(a) the comparison between the boundary (of the chosen) orientation and the product (of

the chosen orientation) on the moduli of domains and
(b) Koszul reordering signs, which measure the signed failure of the method of orienting

the moduli of maps (in terms of orientations of the domain and orientation lines of
inputs and outputs) to be compatible with passing to boundary strata.

See [S5, (12d)] for more details in the case of the A∞ structure, and [A, §C], [G2, §C]
for the case of these computations for the open-closed map. We note in particular that
the forgetful map F1 : 1Ř

1
d → Ř1

d, which forgets the point p1 (and changes the direction
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of the asymptotic marker to point at zd) has complex oriented fibers (in which just the

marked point p1 varies). So the boundary analysis of these “ ˇ
OC1 ◦ b” strata appearing here

is identical to the analysis strata appearing in [A] and [G2] for the “OC ◦ b” strata, which
is why we have not repeated it here.

Multiplying all terms of (5.106) by (−1)?̌d+zd−d+1, and noting that, for instance, zd − d+ 1 +

n− 2 = deg(ǑC
1
(xd ⊗ · · · ⊗ x1)), so

(−1)?̌d+zd−d+1(δ1)utǑC
1

ut(xd, . . . , x1) = (−1)deg(ǑC
1
(xd,...,x1))−n(δ1)ut(−1)?̌dǑC

1

ut(xd, . . . , x1)

= δ1ǑC
1
(xd, . . . , x1),

(5.108)

(and similarly for the d ◦ OC1 term), it follows that

0 = (−1)nδ1ǑC(xd, . . . , x1) + (−1)ndǑC
1
(xd, . . . , x1)

− ǑC
1
b(xd, . . . , x1)− (−1)?̌d+zd−d+1OCS

1

ut (xd, . . . , x1),
(5.109)

but ?̌d +zd − d+ 1 = ♣d, and hence the last term above is −OCS
1

(xd, . . . , x1) as desired.
�

Proof of Proposition 8. The “sector decomposition” performed in Proposition 7 which

compares OCS
1

to ÔC ◦Bnu ◦ ι, along with Proposition 10, immediately implies the result. �

5.5. Higher cyclic chain homotopies and the main result. We now turn to the definition
of the (closed) morphism of S1-complexes, and the proof of Theorem 1 and Corollary 1. The required
data takes the form

(5.110) ÕC =
⊕
k≥0

k[Λ]/Λ2
⊗k
⊗ CHnu

∗ (F,F)→ CF ∗(M)[n]

which is equivalent, as recalled in §2.1 to defining the collection of maps ÕC = {OCk}k≥0, or u-

linearly (see §2.3) ÕC =
∑∞
k=0 OC

kuk, where

(5.111) OCk = (ǑC
k

+ ÔC
k
) := ÕC

k|1
(Λ, . . . ,Λ,−) : CHnu

∗ (F,F)→ CF ∗+n−2k(M).

(recall from §2.1 that k[Λ]/Λ2 is our small model for C−∗(S
1) and S1-complexes are by definition

strictly unital A∞ modules over k[Λ]/Λ2). By definition, the case k = 0 is already covered:

ǑC
0

:= ǑC

ÔC
0

:= ÔC
(5.112)

To handle the general case (k ≥ 0), we will associate operations to, for each d, compactifications of
three moduli spaces of domains, in the following order:

kŘ
1
d+1(5.113)

kR
S1

d(5.114)

kR̂
1
d;(5.115)

The moduli space (5.114) will induce an auxiliary operation useful for the proof, whereas (5.113)

and (5.115) will lead to the desired operations. For k = 0, these moduli spaces are simply Ř1
d+1,

RS
1

d , and R̂1
d as defined earlier. Inductively, we will construct, and study operations from (5.113)

and (5.114) simultaneously, and then finally construct (5.115). Using these moduli spaces, we will

construct the maps ǑC
k
, ÔC

k
and an auxiliary operation OCS

1,k (which we compare to ÔC
k−1
◦Bnu

in Proposition 16 below), and then prove that:
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Proposition 12. The following equations hold, for each k ≥ 0:

(−1)n
k∑
i≥0

δiǑC
k−i

= ÔC
k−1

Bnu + ǑC
k
b(5.116)

(−1)n
k∑
i≥0

δiÔC
k−i

= ÔC
k
b′ + ǑC

k
(1− t).(5.117)

All at once, denoting by OCk = (ǑC
k

+ ÔC
k
) and ÕC =

∑∞
i=0 OC

iui, δeq =
∑∞
j=0 δ

CF
j uj, and

beq = bnu + uBnu as in §2.3, we have that

(5.118) (−1)nδeq ◦ ÕC = ÕC ◦ beq.

This will also directly imply our main Theorems, as we will spell out at the bottom of this
subsection.

The space (5.113) is the moduli space of discs with with d+ 1 positive boundary marked points
z0, . . . , zd labeled in counterclockwise order, 1 interior negative puncture zout equipped with an as-
ymptotic marker, and k additional interior marked points p1, . . . , pk (without an asymptotic marker),
marked as auxiliary. Also, choosing a representative of an element this moduli space which fixes z0

at 1 and zout at 0 on the unit disc, the pi should be strictly radially ordered; that is,

(5.119) 0 < |p1| < · · · < |pk| <
1

2
.

Using the above representative, one can talk about the angle, or argument of each auxiliary interior
marked point,

(5.120) θi := arg(pi).

We require that with respect to the above representative,

(5.121) the asymptotic marker on zout points in the direction θ1 (or towards z0 if k = 0).

(equivalently one could define θk+1 = 0, so that θ1 is always defined). For every representative

S ∈ kŘ
1
d+1,

fix a negative cylindrical end around zout not containing any pi, compatible with the

direction of the asymptotic marker, or equivalently compatible with the angle θ1.
(5.122)

The second moduli space (5.114) is the moduli space of discs with with d positive boundary marked
points z1, . . . , zd labeled in counterclockwise order, 1 interior negative puncture zout equipped with
an asymptotic marker, and k + 1 additional interior marked points p1, . . . , pk, pk+1 (without an
asymptotic marker), marked as auxiliary. Choosing a representative of an element this moduli space
which fixes z0 at 1 and zout at 0 on the unit disc, the pi should be strictly radially ordered and pk+1

should lie on the circle of radius 1
2 ; that is,

(5.123) 0 < |p1| < · · · < |pk| < |pk+1| =
1

2
.

This asymptotic marker for representative satisfies condition (5.121). Abstractly we have that

kR
S1

d
∼= S1 × kŘ

1
d+1, where the S1 parameter is given by the position of pk+1.

The compactification of (5.113) is a real blow-up of the ordinary Deligne-Mumford compactifi-
cation, in the sense of [KSV] (see [SS] for a first discussion in the context of Floer theory).
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The result of this discussion is that the codimension 1 boundary of the compactified check moduli

space kŘ
1

d+1 is covered by the images of the natural inclusions of the following strata:

Rs × kŘ
1

d−s+2(5.124)

sŘ
1

d ×Mk−s(5.125)

k−1Ř
S1

d+1(5.126)

i,i+1
k Ř

1

d+1(5.127)

The strata (5.126)-(5.127), in which |pk| = 1
2 and |pi| = |pi+1| respectively, describe the boundary

loci of the ordering condition (5.119) and hence come equipped with a natural manifold with corners
structure. The strata (5.124)-(5.125) have manifold with corners structure given by standard local
gluing maps using fixed choices of strip-like ends near the boundary. For (5.124) this is standard,
and for (5.125), the local gluing map uses the cylindrical ends (5.122) and (4.35) (in other words, one
rotates the r-pointed angle cylinder by an amount commensurate to the angle of the first marked
point pk−s+1 on the disk before gluing).

Associated to the stratum (5.127) where pi and pi+1 have coincident magnitudes, there is a
forgetful map

(5.128) π̌i : i,i+1
k Ř

1

d+1 → k−1Ř
1

d+1

which simply forgets the point pi+1. Since the norm of pi+1 and pi agree on this locus, this amounts
to forgetting the argument of pi+1 (in particular, the fibers of π̌i are one-dimensional).

The S1-moduli space (5.114), is abstractly S1 × kŘ
1
d+1, and similarly we model its compactifi-

cation is abstractly by S1 × kŘ
1

d+1. However, it is preferable to give an explicit description of the
boundary strata, which is covered in codimension 1 by the following strata:

Rs × kR
S1

d−s+2(5.129)

sR
S1

d ×Mk−s(5.130)

k,k+1
k R

S1

d+1(5.131)

i,i+1
k R

S1

d+1.(5.132)

Here, (5.129) and (5.130) are just versions of the degenerations (5.124) and (5.125), in which a
collection of boundary points bubbles off, or a collection of auxiliary points convergest to zout and
bubbles off (the fact that the latter occurs in codimension 1 is part of the “real blow-up phenomenon”
already discussed). The stratum (5.132), is the locus where |pi| = |pi+1|, for i < k, and the stratum
(5.131), is the locus where |pk| = 1

2 = |pk+1|.
As in (5.128), on strata (5.131)-(5.132) where pi and pi+1 have coincident magnitudes, define

the map

(5.133) πS
1

i : i,i+1
k R

S1

d+1 → k−1R
S1

d+1

to be the one forgetting the point pi+1 (so as before, this map has one-dimensional fibers), including
the case i = k which is (5.131).

For an element S ∈ kR
S1

d , we say that pk+1 points at a boundary point zi if, for any unit disc
representative of S with zout at the origin, the ray from zout to pk+1 intersects zi. The locus where
pk+1 points at zi is denoted

(5.134) kR
S1
i

d+1,
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Figure 4. A representative of an element of the moduli space 3Ř
1
5, along with two

of the most significant types of degenerations: in the first, the final auxiliary point

|p3| reaches the circle of radius 1
2 , and one obtains an element of 2Ř

S1

5 . In the second,
one of the auxiliary points, |p2| tends to zero, forcing p1 and p2 into splitting off a
copy of M2. In terms of the cylindrical coordinates near y−, the distance between
the height of p2 and that of p3 tends to ∞.

Similarly, we say that pk+1 points between zi and zi+1 (modulo d, so including the case zd and z1)
if for such a representative, the ray from zout to pk+1 intersects the portion of ∂S between zi and
zi+1. The locus where pk+1 points between zi and zi+1 is denoted

(5.135) kR
S1
i,i+1

d+1 .

As before (5.56), there is a free Zd action

(5.136) κ : k(R1
d)
S1 → k(R1

d)
S1

which cyclically permutes the labels of the boundary marked points; as before, κ changes the label
zi to zi+1 for i < d, and zd to z1.

Finally, we come to the third moduli space (5.115), the moduli space of discs with with d + 1
positive boundary marked points zf , z1, . . . , zd labeled in counterclockwise order, 1 interior nega-
tive puncture zout equipped with an asymptotic marker, and k additional interior marked points
p1, . . . , pk (without an asymptotic marker), marked as auxiliary, staisfying a strict radial ordering
condition as before: for any representative element with zf fixed at 1 and zout at 0, we require (5.119)
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to hold, as well as condition (5.121). The boundary marked point zf is also marked as auxiliary,

but abstractly, we see that kR̂
1
d
∼= kŘ

1
d+1.

In codimension 1, the compactification kR̂
1

d has boundary covered by inclusions of the following
strata:

Rs × kR̂
1

d−s+2(5.137)

R
m,fk ×d−m+1 kŘ

1

d−m+1 1 ≤ k ≤ m(5.138)

sR̂
1

d ×Mk−s(5.139)

k−1R̂
S1

d(5.140)

i,i+1
k R̂

1

d(5.141)

Once more, on strata (5.141) where pi and pi+1 have coincident magnitudes, define the map

(5.142) π̂i : i,i+1
k R̂

1

d → k−1R̂
1

d.

to be the one forgetting the point pi+1 (so again, this map has one-dimensional fibers). On the
stratum (5.140), which is the locus where |pk| = 1

2 , there is also a map of interest

(5.143) π̂boundary : k−1R̂
S1

d → k−1R
S1

d

which forgets the position of the auxiliary boundary point zf .

Figure 5. A representative of an element of the moduli space 4R̂
1
4.

Denote by kR
1,free
d := kR

S1
d,1

d to be the sector of the moduli space kR
S1

d where pk+1 points
between zd and z1. The auxiliary-rescaling map

(5.144) πf : kR̂
1
d → kR

1,free
d ,

(our replacement of the “forgetful map”) can be described as follows: given a representative S in kR̂
1
d

with zout fixed at the origin, there is a unique point p with |p| = 1
2 between zout and zf . πf (S) is the

element of kR
S1

d with pk+1 equal to this point p and with zf deleted. Of course, zf is not actually
forgotten, because it is determined by the position of pk+1. In particular (5.144) is a diffeomorphism.
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We orient the moduli spaces (5.113)-(5.115) as follows: picking, on a slice of the automorphism
action which fixes the position of zd at 1 and zout at 0, the volume forms

− r1 · · · rkdz1 ∧ dz2 ∧ · · · ∧ dzd−1 ∧ dr1 ∧ dθ1 ∧ · · · ∧ drk ∧ dθk(5.145)

r1 · · · rkdz1 ∧ dz2 ∧ · · · ∧ dzd−1 ∧ dθk+1 ∧ dr1 ∧ dθ1 ∧ · · · ∧ drk ∧ dθk(5.146)

r1 · · · rkdz1 ∧ dz2 ∧ · · · ∧ dzd−1 ∧ dzf ∧ dr1 ∧ dθ1 ∧ · · · ∧ drk ∧ dθk.(5.147)

Above, (ri, θi) denote the polar coordinate positions of the point pi (we could equivalently use
Cartesian coordinates (xi, yi) and substitute dxi ∧ dyi for every instance of ridri ∧ dθi, but polar
coordinates are straightforwardly compatible with the boundary stratum where |pk| = 1

2 ).

Definition 26. A Floer datum on a stable disc S in kŘ
1

d+1 or a stable disc S in kR
S1

d is simply

a Floer datum for S in the sense of Definition 19. A Floer datum on a stable disc S ∈ kR̂
1

d is a
Floer datum for πf (S).

Definition 27. A universal and consistent Floer datum for the cyclic open-closed map, is an

inductive choice, for every k ≥ 0 and d ≥ 1, of Floer data for every representative S0 ∈ kŘ
1

d+1,

S1 ∈ kR
S1

d , and S2 ∈ kR̂
1

d, varying smoothly over these three moduli spaces, whose restriction to the
boundary stratum is conformally equivalent to a product of Floer data coming from lower dimensional
moduli spaces. Near the nodal boundary strata, with regards to gluing coordinates, this choice agrees
to infinite order with the Floer data obtained by gluing. Moreover, this choice should satisfy the

following additional requirements: For S0 ∈ kŘ
1

d+1,

At a boundary stratum of the form (5.127), the Floer datum for S0 is conformally(5.148)

equivalent to the one pulled back from k−1Ř
1

d+1 via the forgetful map π̌i.

For S1 ∈ kR
S1

d ,

On the codimension-1 loci k(R1
d)
S1

i where pk+1 points at zi, the Floer datum(5.149)

should agree with the pullback by τi of the existing Floer datum for the

open-closed map.

The Floer datum should be κ-equivariant, where κ is the map (5.136).(5.150)

At a boundary stratum of the form (5.131) or (5.132), the Floer datum for S1 is(5.151)

conformally equivalent to the one pulled back from k−1R
S1

d+1 via the forgetful map πS
1

i .

Finally, for S2 ∈ kR̂
1

d,

The choice of Floer datum on strata containing Rd,fi components should be(5.152)

constant along fibers of the forgetful map Rd,fi → Rd−1.

The Floer datum on the main component (S2)0 of πf (S2) should coincide with the(5.153)

Floer datum chosen on (S2)0 ∈ kR
1,free
d ⊂ kR

S1

d .

At a boundary stratum of the form (5.140), the Floer datum on the main component(5.154)

of S2 is conformally equivalent to the one pulled back from kR
S1

d via the forgetful

map π̂boundary .

At a boundary stratum of the form (5.141), the Floer datum for S2 is conformally(5.155)

equivalent to the one pulled back from k−1R̂
1

d+1 via the forgetful map π̂i .
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Proposition 13. Universal and conformally consistent choices of Floer data for the cyclic
open-closed map exist.

Proof. Since the choices of Floer data at each stage are contractible, this follows from the
straightforward verification that, for a suitably chosen inductive order on strata, the conditions
satisfied by the Floer data at various strata do not contradict each other. We use the following
inductive order: first, assume we’ve chosen Floer data inductively for all A∞ operations and the

non-unital open-closed map, which give us choices for 0Řd and 0R̂d for all d. Next, we choose Floer

data for 0R
S1

d ; more precisely we choose this data before that of 0R̂d and use the conditions above

to induce that of 0R̂d. Inductively, assuming we have made all choices at level k−1 (k > 0), we first

choose Floer data for kŘd for each d, then kR
S1

d for each d, and finally kR̂d. �

Fixing a universal and consistent choice of Floer data for the cyclic open-closed map, we obtain,
for any d-tuple of Lagrangians L0, . . . , Ld−1, and asympotic conditions

~x = (xd, . . . , x1), xi ∈ χ(Li, Li+1−modd)

yout ∈ O
(5.156)

compactified moduli spaces

kŘ
1

d+1(yout, ~x)(5.157)

kR
S1

d (yout, ~x)(5.158)

kR̂
1

d(yout, ~x)(5.159)

of maps into M with source an arbitrary element S of the moduli spaces (5.113), (5.114), and (5.115)
respectively (strictly speaking, for (5.115) the source is πf (S)), satisfying Floer’s equation using the
Floer datum chosen for the given S, and asymptotic and moving boundary conditions

(5.160)


u(z) ∈ ψρS(z)Li if z ∈ ∂S lies between zi and zi+1 mod d

lims→±∞ u ◦ εk(s, ·) = xk

lims→−∞ u ◦ δ(s, ·) = y

.

Proposition 14. For generic choices of Floer data, the Gromov-type compactifications (5.157)
- (5.159) are smooth compact manifolds of dimension

dim(kŘ
1

d+1(yout, ~x)) = deg(yout)− n+ d− 1−
d∑
i=0

deg(xi) + 2k;(5.161)

dim(kR
S1

d (yout, ~x)) = deg(yout)− n+ d−
d∑
i=0

deg(xi) + 2k;(5.162)

dim(kR̂
1

d(yout, ~x)) = deg(yout)− n+ d−
d∑
i=0

deg(xi) + 2k.(5.163)

For rigid elements u in the moduli spaces (5.157) - (5.159), (which occurs for asymptotics (y, ~x)
satisfying (5.161) = 0, (5.162) = 0, or (5.163) = 0 respectively), the orientations (5.145), (5.146),
(5.147) and [A, Lemma C.4] induce isomorphisms of orientation lines

(kŘ
1
d+1)u : oxd ⊗ · · · ⊗ ox1 → oy(5.164)

(kR
S1

d )u : oxd ⊗ · · · ⊗ ox1 → oy(5.165)

(kR̂
1
d)u : oxd ⊗ · · · ⊗ ox1

→ oy.(5.166)
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Summing the application of these isomorphisms over all u defines the |oyout |k component of three

families of operations ǑC
k
, OCS

1,k, ÔC
k

up to a sign twist:

ǑC
k
([xd], . . . , [x1]) :=

∑
deg(yout)=d−n−2k+1+

∑
deg(xi)

∑
u∈kŘ

1

d(yout;~x)

(−1)?̌d(kŘ
1
d)u([xd], . . . , [x1]);

(5.167)

OCS
1,k([xd], . . . , [x1]) :=

∑
deg(yout)=d−n−2k+

∑
deg(xi)

∑
u∈kR

S1

d (yout;~x)

(−1)?
S1

d (kR
S1

d )u([xd], . . . , [x1]);

(5.168)

ÔC
k
([xd], . . . , [x1]) :=

∑
deg(yout)=d−n−2k+

∑
deg(xi)

∑
u∈kR̂

1

d(yout;~x)

(−1)?̂d(kR̂
1
d)u([xd], . . . , [x1]).

(5.169)

where the signs are given by

?̌d = deg(xd) +
∑
i

i · deg(xi).(5.170)

?S
1

d = ♣d =

d∑
i=1

(i+ 1) · deg(xi) + deg(xd) + d− 1 = ?̌d +zd − 1(5.171)

?̂d =
∑
i

i · deg(xi).(5.172)

A codimension 1 analysis of the moduli spaces (5.157) and (5.159) reveals:

Proposition 15. The following equations hold for each k ≥ 0:

(−1)n
k∑
i=0

δiǑC
k−i

= OCS
1,k−1 + ǑC

k
b(5.173)

(−1)n
k∑
i=0

δiÔC
k−i

= ÔC
k
b′ + ǑC

k
(1− t).(5.174)

Proof. In codimension 1, the boundary of (5.157) is covered by the following types of strata:

• spaces of maps with domain lying on the codimension 1 boundary of the moduli space, i.e.,
in (5.124)-(5.127)
• semi-stable breakings, namely those of the form

kŘ
1

d(y1; ~x)×M(yout; y1)(5.175)

R
1
(x1;x)× kŘ

1

d(yout; ~̃x)(5.176)

All together, this implies, up to sign, that

(5.177) (−1)n
k∑
i=0

δiǑC
k−i

= OCS
1,k−1 + ǑC

k
b+

k−1∑
i=1

ǑC
k,i,i+1

,
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where ǑC
k,i,i+1

is an operation corresponding with some sign twist to (5.127). (5.177) is of course
a shorthand for saying, for a tuple of d cyclically composable morphisms xd, . . . , x1, that

k∑
i=0

δiǑC
k−i
d (xd, . . . , x1) = OC

S1,k−1
d (xd, . . . , x1) +

k−1∑
i=1

ǑC
k,i,i+1

d (xd, . . . , x1)

+
∑
i,s

(−1)z
s
1ǑC

k

d−i+1(xd, . . . , xs+i+1, µ
i(xs+i, . . . , xs+1), xs, . . . , x1)

+
∑
i,j

(−1)]
i
j ǑC

k
(µi+j+1(xi, . . . , x1, xd, . . . , xd−j), xd−j−1, . . . , xi+1).

(5.178)

We first note that in fact the operation ǑC
k,i,i+1

=
∑
d ǑC

k,i,i+1

d is zero, because by condition
(5.148), the Floer datum chosen for elements S in (5.127) are constant along the one-dimensional
fibers of π̌i. Hence, elements of the moduli space with source in (5.127) are never rigid (see Lemma
10 for an analogous more detailed explanation).

Thus, it suffices to verify that the signs coming from the codimension 1 boundary is exactly
that appearing in (5.177). We can safely ignore studying any signs for the vanishing operations such

as ÔC
k,i,i+1

. The remaining sign analysis is exactly as in Proposition 11; more precisely note that
the forgetful map F̌k : kŘ

1
d → 1Ř

1
d which forgets p1, . . . , pk−1 has complex oriented fibers, and in

particular (since the marked points pi contribute complex domain orientations and do not introduce
any new orientation lines) the sign computations sketched in Proposition 11 carry over for any strata

whose domain is pulled back from a boundary stratum of 1Ř
1
d (in turn, as described in Proposition

11, the sign computations for 1Ř
1
d largely reduce to those for 0Ř

1
d. This verifies (5.177).

Similarly, for the hat moduli space, an analysis of the boundary of 1-dimensional moduli spaces
of maps tells us, up to sign verification:

(5.179) (−1)n
k∑
i=0

δiÔC
k−i

= ÔC
k
b′ + ǑC

k
(1− t) + ÔC

k,k,k+1
+

k−1∑
i=1

ÔC
k,i,i+1

,

where ÔC
k,k,k+1

is an operation corresponding with some sign twist to (5.140) and ÔC
k,i,i+1

is an
operation corresponding with some sign twist to (5.141). The conditions (5.154)-(5.155) similarly

imply that ÔC
k,k,k+1

and ÔC
k,i,i+1

are zero, so it is not necessary to even establish what the signs
for these terms are.

To verify signs for (5.179), we apply the principle discussed in the proof of Lemma 17, in which
by treating the auxiliary boundary marked point zf as possessing a “formal unit element asymptotic

constraint e+,” therefore viewing ÔC
k
(xd ⊗ · · · ⊗ x) formally as “ÔC

k
(e+ ⊗ xd ⊗ · · · ⊗ x1)” the signs

for the equations (5.179) applied to strings of length d (xd ⊗ · · · ⊗ x1) follow follow from the sign

computations for ǑC applied to strings of length d + 1 (e+ ⊗ xd · · · ⊗ · · ·x1) (we note that this

analysis applies to the term ÔC
k,k,k+1

as well, which is the hat version of OCS
1,k; however, the

former operation happens to be zero because extra symmetries imply the moduli space controlling
this operation is never rigid).

�

Next, by decomposing the moduli space kR
S1

d into sectors, we can write the auxiliary operation

OCS
1,j in terms of ÔC

j
and the Connes’ B operator:

Proposition 16. As chain-level operations,

(5.180) OCS
1,k = ÔC

k
◦Bnu.
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Proof. The proof directly emulates Proposition 7, and as such we will give fewer details. We
begin by defining operations

(5.181) ÔC
k

d,τi

associated to various “sectors” of the k+ 1st marked point pk+1 of kR
S1

d , for i ∈ Z/dZ. Once more,
to gain better control of the geometry of these sectors in the compactification (when the sector size
can shrink to zero), we pass to an alternate model for the compactification: define

(5.182) kR
1
d,τi

to be the abstract moduli space of discs with d + 1 boundary punctures, z1, . . . , zi, zf , zi+1, . . . , zd
arranged in clockwise order, one interior negative puncture zout with asymptotic marker, and k
additional interior auxiliary marked points p1, . . . , pk which are strictly ordered; for a representative
fixing z0 at 1 and zout at 0,

(5.183) 0 < |p1| < . . . < |pk| <
1

2
.

Moreover, as before,

(5.184) the asymptotic marker on zout points in the direction θ1 (or towards zf if k = 0).

There is a bijection

(5.185) τi : kR
1
d,τi → kR̂

1
d

given by cyclically permuting boundary labels, and in particular we also have an auxiliary-rescaling
map as in (5.144)

(5.186) kR
1
d,τi → kR

S1
i,i+1

d ,

which, for a representative with |zout| = 0, adds a point pk+1 on the line between zout and zf with
|pk+1| = 1

2 and deletes zf . We choose orientations on kR
1
d,τi

to be compatible with (5.186); more
concretely, for a slice fixing the positions of zout and zd, consider the top form

(5.187) r1 · · · rkdz1 ∧ dz2 ∧ · · · ∧ dzd−1 ∧ dzd ∧ dzf ∧ dr1 ∧ dθ1 ∧ · · · ∧ drk ∧ dθk

The compactification kR
1

d,τi is inherited from the identification (5.185); the salient point is that we

treat bubbled off boundary strata containing the point zf as coming from Rd,fi , the moduli space of
discs with ith marked point forgotten (where the ith marked point is zf ), constructed in Appendix
A.2.

We choose as a Floer datum for kR
1

d,τi the pulled back Floer datum from (5.185), it automatically
then exists and is universal and consistent as desired. Moreover we have chosen orientations as in
the case k = 0 so that the auxiliary rescaling map (5.186) is an oriented diffeomorphism extending
to a map between compactifications.

Thus, given a Lagrangian labeling {L0, . . . , Ld−1} and compatible asymptotics {x1, . . . , xd; yout}
we obtain a moduli space of maps satisfying Floer’s equation with the chosen boundary and asymp-
totics:

(5.188) kR
1

d,τi(yout; ~x) := kR̂
1

d(yout;xi−1, . . . , x1, xd, . . . , xi)

a smooth manifold of dimension equal to the dimension of the right hand side, deg(yout)− n+ d−∑d
j=1 deg(xj) + 2k. The isomorphisms of orientation lines

(5.189) (kR
1
d,τi)u : oxd ⊗ · · · ⊗ ox1

→ oyout
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induced by elements u of the zero-dimensional components of (5.188) define the |oyout |k component

of the operation ÔC
k

d,τi , up to the following sign twist:

ÔC
k

d,τi([xd], . . . , [x1]) :=
∑

deg(yout)=n−d+
∑

deg(xk)−2k

∑
u∈kR̂

1

d,τi
(yout;~x)

(−1)?̂d(kR
1
d,τi)u([xd], . . . , [x1]),

?S
1

d =

d∑
i=1

(i+ 1) · deg(xi) + deg(xd) + d− 1.

(5.190)

Now, exactly as in Lemma 18, there is a chain-level equality of signed operations

(5.191) OC
S1,k
d =

d−1∑
i=0

ÔC
k

d,τi .

We recall the geometric statement underlying this; the point is by construction there is an oriented
embedding

(5.192)
∐
i

kR
1
d,τi

∐
i π

i
f−→
∐
i

kR
S1
i,i+1

d ↪→ kR
S1

d ,

compatible with Floer data, covering all but a codimension 1 locus in the target, and moreover all
the sign twists defining the operations OCkd,τi are chosen to be compatible with the sign twist in

the operation OCS
1,k (this uses the fact that the Floer data on kR

S1
i,i+1 agrees with the data on

kR̂
1
d via the cyclic permutation map κ−i by (5.58)). After perturbation zero-dimensional solutions

to Floer’s equation can be chosen to come from the complement of any codimension 1 locus in the
source abstract moduli space, implying the equality (5.191).

Finally, all that remains is a sign analysis whose conclusion is that

(5.193) ÔC
k

d,τi = ÔC
k

d ◦ snu ◦ ti

where snu is the operation arising from changing a check term to a hat term with a sign twist
(3.24). (some such statement is unsurprising, as the operations are constructed with identical Floer
data but potentially different sign twists). The details of this sign comparison are exactly the same
as in Proposition 19, including with signs, as when orienting the moduli of maps, the additional
marked points p1, . . . pk only contribute complex orientations to the moduli spaces of domains (and
no additional orientation line terms). �

Proof of Proposition 12. This is an immediate corollary of the previous two propositions.
�

We now collect all of this information to finish the proof of our main result.

Proof of Theorem 1. The pre-morphism ÕC ∈ Rhomn
S1(CHnu

∗ (F,F), CF ∗(M)), written u-

linearly as
∑
i OC

kuk, where OCk = ǑC
k⊕ ÔC

k
are as constructed above, satisfies ∂ÕC = 0 by Prop.

12, hence ÕC is closed, or an S1-complex homomorphism, also known as an A∞ C−∗(S
1) module

homomorphism (see §2.1). Note that [OC0] = [OCnu] = [OC] where the first equality is by definition

and the second is by Corollary 6, hence ÕC is an enhancement of OC (as defined in §2.1). �

Proof of Theorem 1. This is an immediate consequence of Theorem 1 and the induced
homotopy-invariance properties for equivariant homology groups discussed in §2, particularly Cor.
3 and Prop. 2. �

5.6. Variants of the cyclic open-closed map.
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5.6.1. Using singular (pseudo-)cycles instead of Morse cycles. Let M be Liouville or compact

and monotone (in which case M̄ = M and ∂M̄ = ∅,9 and let us consider the version of ÕC with target
the relative cohomology H∗(M̄, ∂M̄) as in §4.1.2. Instead of using a C2 small Hamiltonian to define
the Floer complex computing H∗+n(M,∂M) (which we only did for simultaneous compatibility with
the symplectic cohomology case), we can pass to a geometric cycle model for the group, and then

the map ÕC, which simplifies many of the constructions in the previous section (in the sense that

the codimension 1 boundary strata of moduli spaces, and hence the equations satisfied by ÕC, are
strictly a subset of the terms appearing above). As such, it will be sufficient to fix some notation
for the relevant moduli spaces, and state the relevant simplified results.

We denote by

kP̌
1
d+1(5.194)

kP
S1

d(5.195)

kP̂
1
d;(5.196)

copies of the abstract moduli spaces (5.113)-(5.115) where the interior puncture zout is filled in and
replaced by a marked point z̄out, without any asymptotic marker. The compactifications of these
moduli spaces are exactly as before, except that the auxiliary points p1, . . . , pk are now allowed to
coincide with z̄out, without breaking off an angle-decorated cylinder / element of Mr (in the language
of §4.3. In other words, the real blow-up of Deligne-Mumford compactifications at zout, which is
responsible for boundary strata containing Mr factors, no longer occurs (but all other degenerations
do occur). Correspondingly the codimension-1 boundaries have all of the factors as before except
for factors containing Mr’s.

Inductively choose consistent Floer data as before on these moduli spaces of domains, satisfying
all of the consistency conditions as before (except for any consistency conditions involving Mr moduli
spaces, which no longer occur on the boundary). For a basis β1, . . . , βs of smooth (pseudo)-cycles
in homology H∗(M) whose Poincaré duals [β∨i ] generate the cohomology H∗(M̄, ∂M̄), one obtains
moduli spaces

kP̌
1
d+1(βi; ~x)(5.197)

kP
S1

d (βi, ~x)(5.198)

kP̂
1
d(βi, ~x);(5.199)

of moduli spaces of maps into M with source an arbitrary element of the relevant domain moduli
space, satisfying Floer’s equation as before, with Lagrangian boundary and asymptotics ~x as before,
with the additional point constraint that zout lie on the cycle βi. As before, standard methods ensure
that 0 and 1-dimensional moduli spaces are (for generic choices of perturbation data and/or βi)
transversely cut out manifolds of the “right” dimension and boundary, which is all that we need.

Then, define the coefficient of [β∨i ] ∈ H∗(M̄, ∂M̄) in ǑC
k
(xd ⊗ · · · ⊗ x1) to be given by signed

counts (with the same sign twists as before) of the moduli spaces (5.197); similarly for ÔC
k

and

OCS
1,k using the moduli spaces (5.199) and (5.198). A simplification of the arguments already given

(in which the δk operations no longer occur, but every other part of the argument carries through)
implies that:

Proposition 17. The pre-morphism ÕC =
∑∞
i=0 OC

kuk ∈ Rhomn
S1(CHnu

∗ (F,F), H∗(M̄, ∂M̄))
satisfies

(5.200) ÕC ◦ beq = 0,

9Technically we should write QH∗(M) in this case, but additively QH∗(M) = H∗(M) and correspondingly no

sphere bubbling occurs in the moduli spaces we define here, so there is no difference–yet.
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where beq = bnu+uBnu. In other words, ÕC is a homomorphism of S1-complexes between CHnu
∗ (F,F)

with its strict S1 action and H∗(M̄, ∂M̄) with its trivial S1 action.

5.6.2. Compact Lagrangians in non-compact manifolds. Now let us explicitly restrict to the case
of M a Liouville manifold, and denote by F ⊂W the full-subcategory consisting of a finite collection
of compact exact Lagrangian branes contained in the compact region M . In this case, thinking of

the map OC (and its cyclic analogue, ÕC) as a pairing CHnu
∗ (F,F) ⊗ H∗(M) → k[n] , there is a

non-trivial refinement

(5.201) OCcpct : CH∗(F)⊗ SC∗(M)→ k[−n].

where SC∗(M) is the symplectic cohomology chain complex.

Remark 41. The refinement (5.201) relies on extra flexibility in Floer theory for compact La-
grangians, first alluded to in this form in [S6], which allow us to define operations lacking outputs
by Poincaré dually treating some inputs as outputs with “negative weight”, something not possi-
ble for the wrapped Fukaya category. Or, equivalently, the sub-closed one-form αS used in Floer
theoretic perturbations has complete freedom along boundary conditions corresponding to compact
Lagrangians, whereas along non-compact boundary conditions, it is required to vanish in order to
obtain desired compactness results. In particular, it is possible for αS to be sub-closed even if the
the sum of weights of outputs minus the sum of weights of inputs is not positive.

Remark 42. The idea that there should be a map SC∗(M) → CH∗(F)∨ is in some sense not
new. Namely, categories C with a weak proper Calabi-Yau structure of dimension n (such as the
Fukaya category of compact Lagrangians; see e.g., [S5, (12j)]) come equipped with isomorphisms
between the dual of Hochschild chains and Hochschild co-chains CH∗(C)∨[−n] ' CH∗(C), and the
existence of a map SH∗(M)→ HH∗(F) was already observed in [S2].

The geometric moduli spaces used to prove our main result apply verbatim in this case (with
the interior marked point changed to an input, and the ordering of the auxiliary marked points
reversed). We will simply state the resulting structures:

Proposition 18. Consider CH∗(F,F)⊗SC∗(M) as an S1-complex with its diagonal S1 action
(see Lemma 1 in §2.1), and k ∈ S1−mod with its trivial action. Then, there is a homomorphism of
S1-complexes

ÕCcpct ∈ Rhomn
S1(CH∗(F,F)⊗ SC∗(M),k)

e.g., ÕCcpct satisfies ∂ÕCcpct = 0; in other words, for any σ ⊗ y ∈ CH∗(F,F)⊗ SC∗(M) (or linear
combination thereof), we have

ÕCcpct,eq ◦ ((−1)deg(y)beq(σ)⊗ y + σ ⊗ δSCeq (y)) = 0.

To clarify the relevant moduli spaces used, we define

kŘ
1
d+1,cpct(5.202)

kR
S1

d,cpct(5.203)

kR̂
1
d,cpct;(5.204)

copies of the abstract moduli spaces (5.113)-(5.115) where the interior puncture zout is now a positive
puncture (still equipped with an asymptotic marker); and all of the other inputs and auxiliary
points are as before. The compactified moduli spaces have boundary strata agreeing with the
boundary strata of the compactified (5.113)-(5.115), except now the Mr cylinders break “above” the

k−rR
1
d+1,cpct (equipped with ,̌ ,̂ or S1 decoration) discs instead of “below.” It is convenient in this

model to reverse the labeling of the auxiliary points p1, . . . , pk so that now 0 < |pk| ≤ · · · ≤ |p1| ≤ 1
2

(so that their order is compatible with the ordering of auxiliary points on Mr moduli spaces).
Equipping these moduli spaces with perturbation data, counting solutions with sign twists as

before, etc. defines the terms in the above pre-morphism exactly as in the previous subsections (with
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identical analysis to show that, for instance, the operation corresponding to kR
S1

d,cpct is the operation

corresponding to k−1R̂
1
d,cpct composed with the Connes’ B operator).

6. Calabi-Yau structures

6.1. The proper Calabi-Yau structure on the Fukaya category. We say an A∞ category
A is proper (sometimes called compact) if its cohomological morphism spaces H∗(homA(X,Y )) have
total finite rank over k, for each X,Y . Recall that for any object X ∈ A, the inclusion of chain
complexes hom(X,X)→ CH∗(A) induces a chain map [i] : H∗(hom(X,X))→ HH∗(A).

Definition 28. Let A be a proper category. A chain map tr : CH∗+n(A) → k is called a
weak proper Calabi-Yau structure, or non-degenerate trace of dimension n if, for any two objects
X,Y ∈ ob A, the composition

(6.1) H∗(homA(X,Y ))⊗Hn−∗(homA(Y,X))
[µ2

A]→ Hn(homA(Y, Y ))
[i]→ HHn(A)

[tr]

→ k

is a perfect pairing.

Remark 43. In the symplectic literature, weak proper Calabi-Yau structures of dimension n are
sometimes defined as bimodule quasi-isomorphisms A∆

∼→ A∨[n], where A∆ denotes the diagonal
bimodule and A∨ the linear dual diagonal bimodule — see [S5, (12j)] and §6.2 for brief conventions
on A∞ bimodules (see also [T1]). To explain the relationship between this definition and the one
above, which has sometimes been called a weakly cyclic structure or ∞-inner product [T1, S10],
note that for any compact A∞ category A, there are quasi-isomorphisms (with explicit chain-level
models)

(6.2) (CH∗(A))∨ = CH∗(A,A∨)
∼← homA−A(A∆,A

∨)

where homA−A denotes morphisms in the category of A∞ bimodules (see e.g., [S3] or [G1]). Under
this correspondence, non-degenerate morphisms from HH∗(A) → k as defined above correspond
precisely (cohomologically) to weak Calabi-Yau structures, e.g., those bimodule morphisms from
A∆ to A∨ which are cohomology isomorphisms.

Remember that the Hochschild chain complex of an A∞ category A comes equipped with a
natural chain map to the (positive) cyclic homology chain complex

pr : CHnu
∗ (A)→ CC+

∗ (A)

modeled on the chain level by the map that sends α 7→ α · u0, for α ∈ CHnu(A).

Definition 29 (c.f. Kontsevich-Soibelman [KS2]). A (strong) proper Calabi-Yau structure of
degree n is a chain map

(6.3) t̃r : CC+
∗ (A)→ k[−n]

from the (positive) cyclic homology chain complex of A to k of degree −n, such that the induced map
tr = t̃r ◦ pr : CH∗(A)→ k[−n] is a weak proper Calabi-Yau structure.

Via the model for cyclic chains given as CC∗(A) := (CHnu
∗ (A)((u))/uCHnu

∗ (A)[[u]], b + uBnu),
such an element t̃r takes the form

(6.4) t̃r :=

∞∑
i=0

trkuk

where

(6.5) trk := (ťr
k ⊕ t̂rk) : CHnu

∗ (A)→ k[−n− 2k].

We now complete the sketch of Theorem 2 described in the Introduction: first, define the putative
proper Calabi-Yau structure as the composition:

(6.6) t̃r : HC+
∗ (F)

ÕC→ H∗+n(M,∂M)⊗k k((u))/uk[[u]]→ k
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where the last map sends PD(pt) · u0 ∈ H2n(M,∂M) to 1, and other elements to zero. Instead
of using a C2 small Hamiltonian to define the Floer complex computing H∗+n(M,∂M) (which we
only did for simultaneous compatibility with the symplectic cohomology case), we can pass to a

geometric cycle model for the map ÕC (and hence the map t̃r) described in §5.6.1. The map t̃r in
particular involves counts of the moduli spaces described there where the interior marked point z̄out
is unconstrainted, e.g., kP̌

1
d+1([M ]; ~x), kP̂

1
d+1([M ]; ~x), and kP

S1

d+1([M ]; ~x); see Figure 6.

The following well-known Lemma verifies the non-degeneracy property of the map t̃r:

Lemma 20 (see e.g., [S5, (12j)], [S10, Lemma 2.4])). The corresponding morphism [tr] :
HH∗+n(F,F)→ k is a non-degenerate trace (or weak proper Calabi-Yau structure).

Proof. This is an immediate consequence of Poincaré duality in Lagrangian Floer cohomology,
see the references cited above. As a brief sketch, note that tr ◦ µ2 : hom(X,Y ) ⊗ hom(Y,X) → k
is chain homotopic (and hence equal in cohomology) to a chain map which counts holomorphic
discs with an interior marked point satisfying an empty constraint, and two (positive) boundary
asymptotics on p, q, with corresponding Lagrangian boundary on x and y. Via a further homotopy
of Floer data, one can arrange that the generators of hom(X,Y ) and hom(Y,X) are in bijection (for
instance if one is built out of time-1 flowlines of H and one out of time-1 flowlines of −H), and the
only such rigid discs are constant discs between p and the corresponding p∨. �

Proof of THeorem 2. The above discussion constructs t̃r and Lemma 20 verifies non-degeneracy.
�

Figure 6. An image of representatives of moduli spaces 3P̌
1
3([M ]; ~x) and

2P̂
1
4([M ]; ~x), which appear in the map t̃r.

6.2. The smooth Calabi-Yau structure on the Fukaya category. We give a brief overview
of (a categorical version of) the notion of a strong smooth Calabi-Yau structure, following [KV].
Such structures are show in loc. cit. to induce chain-level topological field theory structures on the
Hochschild chain complex of the given category, controlled by the open moduli space of curves with
marked points and asymptotic markers. Crucially, not all operations are allowed; all moduli spaces
appearing have at least one output (sometimes called a ‘right positive field theory’)

Remark 44. Contrast this to the field theoretic operations associated to compact Calabi-
Yau/cyclic A∞ structures considered in [C2, KS2] where all operations must have at least one
input (sometimes called a ‘left positive’ theory).
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It will be necessary to make use of some of the theory of A∞ bimodules over a category C. We do
so without much explanation, instead referring readers to existing references [S3,T1,G1]. Roughly,
an A∞ bimodule P is the data, of, for every pair of objects C, a chain complex (P(X,Y ), µ0|1|0),
along with ‘higher multiplication maps’ µs|1|t : homC(Xs−1, Xs)⊗· · ·⊗homC(X0, X1)⊗P(X0, Yt)⊗
homC(Yt−1, Yt) ⊗ · · · ⊗ homC(Y0, Y1) → P(Xs, Y0) satisfying a generalization of the A∞ equations.
A∞ bimodules over C form a dg category C−mod−C with morphisms denoted hom∗C−C(P,Q) (for dg
bimodules over a dg category, this chain complex corresponds to a particular chain model for the
‘derived morphism space’ using the bar resolution). The basic examples of bimodules we require
are:

• the diagonal bimodule C∆ which associates to a pair of objects (K,L) the chain complex
C∆(K,L) := homC(L,K).
• for any pair of objects A,B, there is a Yoneda bimodule YlA ⊗k YrB which associates to a

pair of objects (K,L) the chain complex YlA ⊗k YrB(K,L) := homC(A,K)⊗ homC(L,B).

Yoneda bimodules are the analogues of the free bimodule A⊗Aop in the category of bimodules over
an associative algebra A (which are the same as A⊗Aop modules). Accordingly, we say a bimodule
P perfect if, in the category C−mod−C, it is split-generated by Yoneda bimodules. As mentioned in
the introduction, we say that the category C is (homologically) smooth if C∆ is perfect. Recall for
what follows that for any bimodule P there is a cap product action

(6.7) ∩ : HH∗(C,P)⊗HH∗(C,C)→ HH∗(C,P)

see e.g., [G1, §2.10] for chain level formulae; this is a slight variation on the formula presented there.
(more generally, the cap products acts as HH∗(C,P)⊗HH∗(C,Q)→ HH∗(C,P⊗C Q)).

Definition 30. Let C be a homologically smooth A∞ category. A cycle σ ∈ CH−n(C,C) is said
to be a non-degenerate co-trace, or a weak smooth Calabi-Yau structure, if, for any objects K,L,
the operation of capping with σ induces a (homological) isomorphism

(6.8) [∩σ] : HH∗(C,YlK ⊗k YrL)
∼=→ HH∗−n(C,YlK ⊗k YrL) ' H∗(homC(K,L)).

Remark 45. The second isomorphism HH∗−n(C,YlK⊗kY
r
L) ' H∗(homC(K,L)) always holds, at

least for cohomologically unital categories, which we are always implicitly working with; the content
is in the first.

Remark 46. Continuing Remark 43, there is an alternate perspective on Definition 30 using
bimodules. Namely, for any bimodule P, there is a naturally associated bimodule dual P!, defined
for a pair of objects (K,L) as the chain complex P!(K,L) := hom∗C−C(P,YlK ⊗k YrL) (the higher
bimodule structure is defined in [G1, Def. 2.40]; it is an A∞ analogue of defining, for an A bimodule
B, B! := RHomA⊗Aop(B,A⊗Aop) where RHom is taken with respect to the outer bimodule structure
on A ⊗ Aop and the bimodule structure on B! comes from the inner bimodule structure; see e.g.,
[G5, §20.5].

We abbreviate C! := C!
∆, and call C! the inverse dualizing bimodule, following [KS2] (observe

C!(K,L) ' CH∗(C,YlK ⊗k YrL)). For a homologically smooth category C one notes that there is a
quasi-isomorphism CH−n(C) ' hom∗C−C(C!

∆,C∆) (see [KS2, Rmk. 8.2.4] for the case ofA∞ algebras),
where the equivalence associates to any element, the bimodule morphism whose cohomology level
map is the cap product operation (6.8). Non-degenerate cotraces correspond precisely then to

bimodule quasi-isomorphisms C! ∼→ C∆. Details of this will in the A∞ categorical setting will be
discussed more in [CG].

Let ι : CC−∗ (C)→ CH∗(C) denote the chain-level model of the inclusion of homotopy fixed points
mentioned in the introduction; concretely this is the chain map sending

∑∞
i=0 αiu

0 7→ α0.

Definition 31. Let C be a homologically smooth A∞ category. A (strong) smooth Calabi-Yau
structure is a cycle σ̃ ∈ CC−−n(C) such that the corresponding element ι(σ̃) ∈ CH−n(C) is a weak
smooth Calabi-Yau structure.

64



Using these definitions and the cyclic open-closed map, we restate and prove Theorem 3:

Theorem 6 (Theorem 3 above). Suppose a Liouville manifold is non-degenerate in the sense
of [G1], meaning that the map [OC] : HH∗−n(W) → SH∗(M) hits 1. Then, the wrapped Fukaya
category possesses a canonical strong smooth Calabi-Yau structure.

Proof. In [G1] it was proven that, assuming non-degeneracy ofM , the map [OC] : HH∗−n(W)→
SH∗(M) is an isomorphism, W is homologically smooth, and moreover that the pre-image [σ] of
1 gives a weak smooth Calabi-Yau structure in the sense described above. Corollary 1 implies that
there is a commutative diagram of isomorphisms:

(6.9) HC−∗−n(W)
ι
//

[ÕC
−

]
��

HH∗−n(W)

[OC]

��
H∗(SC∗(M)hS

1

)
ι

// SH∗(M)

,

where the horizontal maps ι are the canonical maps PhS
1 → P ,

∑∞
i=0 αiu

i 7→ α0 modeling the
inclusion of homotopy fixed points.

Recall that 1 ∈ SH∗(M) is defined to be the image of 1 under the natural map H∗(M) →
SH∗(M). But this chain level map, which comes formally from the inclusion of constant loops in
the free loop space, naturally extends to a morphism of A∞ C−∗(S

1) modules, using the trivial S1

action on C∗(M) (In particular, we can make choices so that C∗(M) is a subcomplex of SC∗(M)
with trivial BV operators, see Lemma 11, c.f., [ACF, Z]). In particular, on the level of homotopy
fixed points, there is a map

i : H∗(M)[u]→ H∗(SC∗(M)hS
1

)

and hence there is a canonical lift 1̃ = i(1 · u0) ∈ H∗(SC∗(M)hS
1

) of the element 1 ∈ SH∗(M).

Since [ÕC
−

] is an isomorphism, it follows that there is a unique element σ̃ ∈ HC−∗−n(W) hitting 1̃.
By (6.9), ι(σ̃) = σ, providing the desired lift of the weak smooth Calabi-Yau structure. �

Appendix A. Moduli spaces and operations

A.1. A real blow-up of Deligne-Mumford space. We review, in a special case, the com-
pactifications of moduli spaces of surfaces where some interior marked points are equipped with
asymptotic markers, which are a real blow-up of Deligne-Mumford moduli space as constructed in
[KSV]. In particular, we show how the abstract compactifications in the sense of [KSV] can be
identified some of the specific models for the relevant strata we use in Section 5. (see also [SS] for
an appearance in Floer cohomology)

To begin, let

(A.1) M2,0

denote the space of spheres with 2 marked points z1, z2 removed and asymptotic markers τ1, τ2
around the z1 and z2, modulo automorphism. Fixing the position of z1 and z2 and one of τ1 or τ2
gives a diffeomorphism

M2,0
∼= S1.

On an arbitrary representative in M2,0, we can think of the map to S1 as coming from the difference
in angles between τ1 and τ2 (after, say, parallel transporting one tangent space the other along a
geodesic path).

It is convenient to parametrize this difference by a point on the sphere itself, in the following
manner (though this will break symmetry between z1 and z2). Let

(A.2) M2,1

be the space of spheres with 2 marked points z1, z2 removed, an extra marked point y1 and asymptotic
markers τ1, τ2 around the z1 and z2, modulo automorphism such that, for any representative with
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position of z1, z2, and y fixed, τ2 is pointing towards y. The remaining freedom in τ1 once more
gives a diffeomorphism M2,1

∼= S1.
We can take a different representative for elements of M2,1: up to biholomorphism any element

of (A.2) is equal to a cylinder sending z1 to +∞, z2 to −∞) with fixed asymptotic direction around
+∞ and an extra marked point y at fixed height freely varying around S1, such that the asymptotic
marker at −∞ coincides with the S1 coordinate of y. Thus, we obtain an identification

(A.3) M2,1
∼= M1

where M1 is the space in Definition 12.
Denote by

(A.4) sR
1
k

the moduli space of discs (S, z1, . . . , zk, y, τy, p1, . . . , ps) with k boundary marked points z1, . . . , zk
arranged in clockwise order, an interior marked point with asymptotic marker (y, τy), and interior

marked points with no asymptotic markers x1, . . . , xs, modulo autmorphism. Any element Rk+1
1,s

admits a unique unit disc representative with zk fixed at 1 and y at 0; call this the (zk, y) standard
representative. The positions of the asymptotic marker, remaining marked points, and interior
marked points identify Rk+1 with an open subset of S1 × R2s × Rk. The space (A.4) has another
ordering-type constraint, on the positions of the interior marked points:

(A.5) Any element has standard representative satisfying 0 < |p1| < |p2| < · · · < |pk|.
and a condition on the asymptotic marker:

(A.6) For the standard representative, τy points at p1.

The condition (A.5), which cuts out a manifold with corners of the space with pi unconstrained, is
technically convenient, as it reduces the types of bubbles that can occur with y). The compactifica-
tion of interest, denoted

(A.7) sR
k

1

differs from the Deligne-Mumford compactification in a couple respects: firstly, in the closures of
the ordering conditions (A.5) away from zero, we allow points pi and pi+1 to be coincident without
bubbling off (alternatively, we can Deligne-Mumford compactify and collapse the relevant strata).

More interestingly, (A.7) is a real blow-up of the usual Deligne-Mumford compactification along
any strata in which y and pi points bubble off, in the following precise sense. Let Σ = S0 ∪y+=y− S1

denote a nodal surface, where

• S0 is a sphere containing interior marked points (y, τy), p1, . . . , pj , and another marked
point y+, and

• S1 is a disc with k boundary marked points z1, . . . , zk, and interior marked points y−, pj+1,
. . . , ps.

To occur as a possible degenerate limit of (A.4), the relevant points pi on S0 and S1 must satisfy an
ordering condition:

For a representative S′0 of S0 with y and y+ at opposite poles, 0 < |p1| < · · · < |pj | < |y+|,(A.8)

where |p| denotes the geodesic distance from p to y for S′0.

For the (zk, y
−) standard representative of S1, 0 < |pj+1| < · · · < |ps|.(A.9)

Also,
(A.10)
For the same representative S′0, the asymptotic marker τy should point (geodesically) towards p1.

The relevant stratum of (A.7) consists of all such configurations S0 ∪y+=y− S1 equipped with an
extra piece of information: a gluing angle, which is a real positive line τy+,y− in Ty+S0 ⊗ Ty−S1,
or equivalently, a pair of asymptotic markers around y+ and y−, modulo the diagonal S1 rotation
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action. Note that the set of gluing angles is S1, giving such strata 1 higher codimension. We note
that there is a natural choice of asymptotic marker on S1, coming from the position of |pj+1| (or if
j = s, the position of zk) for the standard representative. Fixing such a choice identifies S1 with an
element of s−jR

k
1 and equips S0 with a (freely varying) asymptotic marker τy+ at y+. In a manner

as in (A.3), we can identify S0 up to biholomorphism with an element of Mj . Hence, we’ve identified
the relevant stratum with

(A.11) Mj × s−jR
k

1 ,

which will be useful in defining the relevant pseudoholomorphic curve counts.

A.2. Operations with a forgotten marked point. We introduce auxiliary degenerate op-
erations that will arise as the codimension 1 boundary of the open-closed map and equivariant
structure. This subsection is a very special case of the general discussion in [G1].

Let d ≥ 2 and i ∈ {1, . . . , d}. The moduli space of discs with d marked points with ith boundary
point forgotten

(A.12) Rd,fi

is exactly the moduli space of discs Rd, with ith boundary marked point labeled as auxiliary.
The Deligne-Mumford compactification

(A.13) R
d,fi

is exactly the usual Deligne-Mumford compactification, along with the data of an auxiliary label at
the relevant boundary marked point.

For d > 2, the i-forgetful map

(A.14) Fd,i : Rd,fi → Rd−1.

associates to a surface S the surface obtained by putting the ith point back in and forgetting it.
This map admits an extension to the Deligne-Mumford compactification

(A.15) Fd,i : R
d,fi → R

d−1

as follows: eliminate any non-main components with only one non-auxiliary marked point p, and label
the positive marked point below this component by p. We say that any component not eliminated
is f-stable and any component eliminated is f-semistable.

The above map is only well-defined for d > 2. In the semi-stable case d = 2, R2,fi is a point so
one can define an ad hoc map

(A.16) Fssi : R2,fi → pt.

which associates to a surface S the (unstable) strip Σ1 = (−∞,∞)× [0, 1] as follows: take the unique
representative of S which, after its three marked points are removed, is biholomorphic to the strip
Σ1 with an additional puncture (0, 0). Then, forget/put back in the point (0, 0).

Definition 32. A forgotten Floer datum for a stable disc with ith point auxiliary S ∈ R
d,fi

consists of, for every component T of S,

• a Floer datum for T , if T does not contain the auxiliary point,
• a Floer datum for Fj(T ), if T is f -stable and contains the auxiliary point as its jth input.
• A Floer datum on Fssi (T ) which is translation invariant, if T is f-semistable.

(by translation invariant, we mean the following: note that Σ1 has a canonical R-action given by
linear translation in the s coordinate. We require H, J , and the time-shifting map/weights to be
invariant under this R action, and in particular should only depend on t ∈ [0, 1] at most).

In particular, this Floer datum should only depend on the point Fd,i(S).

Proposition 19. Let i ∈ {1, . . . , d} with d > 1. Then the operation associated to R
d,fi

is zero
if d > 2 and the identity operation I(·) (up to a sign) when d = 2.
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Sketch. Suppose first that d > 2, and let u be any solution to Floer’s equation over the space
Rd,fi with domain S. Let Since the Floer data on S only depends on Fd,i(S), we see that maps

from S′ with S′ ∈ F−1
d,i (Fd,i(S)) also give solutions to Floer’s equation with the same asymptotics.

Moreover, the fibers of the map Fd,i are one-dimensional, implying that u cannot be rigid, and thus
the associated operation is zero.

Now suppose that d = 2. Then the forgetful map associates to the single point [S] ∈ R2,fi the
unstable strip with its translation invariant Floer datum. Since non-constant solutions can never
be rigid (as, by translating, one can obtain other non-constant solutions), it follows that the only
solutions are constant ones, and that the resulting operation is therefore the identity. �
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Études Sci. 112 (2010), 191–240. MR2737980
[ACF] Peter Albers, Kai Cieliebak, and Urs Frauenfelder, Symplectic tate homology (201405), available at 1405.

2303.

[AFO+] M. Abouzaid, K. Fukaya, Y.-G. Oh, H. Ohta, and K. Ono, Quantum cohomology and split generation in
Lagrangian Floer theory. in preparation.

[AS] Mohammed Abouzaid and Paul Seidel, An open string analogue of Viterbo functoriality, Geom. Topol. 14

(2010), no. 2, 627–718. MR2602848
[B] Dan Burghelea, Cyclic homology and the algebraic K-theory of spaces. I, Applications of algebraic K-theory

to algebraic geometry and number theory, Part I, II (Boulder, Colo., 1983), 1986, pp. 89–115. MR862632
(88i:18009a)

[BEE] Frédéric Bourgeois, Tobias Ekholm, and Yakov Eliashberg, Effect of Legendrian Surgery, Geom. Topol. 16

(2012), no. 1, 301–389.
[BO] Frédéric Bourgeois and Alexandru Oancea, S1-equivariant symplectic homology and linearized contact ho-

mology, Int. Math. Res. Not. (2016), doi:10.1093/imrn/rnw029, available at http://arxiv.org/abs/1212.

3731.
[C1] Alain Connes, Noncommutative differential geometry, Inst. Hautes Études Sci. Publ. Math. 62 (1985), 257–

360. MR823176 (87i:58162)

[C2] Kevin Costello, Topological conformal field theories and Calabi-Yau categories, Adv. Math. 210 (2007),
no. 1, 165–214. MR2298823 (2008f:14071)

[C3] Kevin J. Costello, The Gromov-Witten potential associated to a TCFT (2005), available at arXiv:math/

0509264.
[CFH] K. Cieliebak, A. Floer, and H. Hofer, Symplectic homology. II. A general construction, Math. Z. 218 (1995),

no. 1, 103–122. MR1312580 (95m:58055)
[CFHW] K. Cieliebak, A. Floer, H. Hofer, and K. Wysocki, Applications of symplectic homology. II. Stability of the

action spectrum, Math. Z. 223 (1996), no. 1, 27–45. MR1408861 (97j:58045)

[CG] Ralph Cohen and Sheel Ganatra, Calabi-Yau categories, the Floer theory of the cotangent bundle, and the
string topology of the base, 2015. In preparation.

[CL] Cheol-Hyun Cho and Sangwook Lee, Potentials of homotopy cyclic A∞-algebras, Homology Homotopy Appl.

14 (2012), no. 1, 203–220. MR2954673
[F1] Andreas Floer, Witten’s complex and infinite-dimensional Morse theory, J. Differential Geom. 30 (1989),

no. 1, 207–221. MR1001276 (90d:58029)
[F2] Kenji Fukaya, Cyclic symmetry and adic convergence in Lagrangian Floer theory, Kyoto J. Math. 50 (2010),

no. 3, 521–590. MR2723862 (2011m:53169)

[F3] , Counting pseudo-holomorphic discs in Calabi-Yau 3-folds, Tohoku Math. J. (2) 63 (2011), no. 4,
697–727. MR2872962

[FH] A. Floer and H. Hofer, Symplectic homology. I. Open sets in Cn, Math. Z. 215 (1994), no. 1, 37–88.

MR1254813 (95b:58059)
[FOOO] Kenji Fukaya, Yong-Geun Oh, Hiroshi Ohta, and Kaoru Ono, Lagrangian intersection Floer theory: anomaly

and obstruction. Part II, AMS/IP Studies in Advanced Mathematics, vol. 46, American Mathematical
Society, Providence, RI, 2009. MR2548482

[FSS] K. Fukaya, P. Seidel, and I. Smith, The symplectic geometry of cotangent bundles from a categorical view-

point, Homological mirror symmetry, 2009, pp. 1–26. MR2596633 (2011c:53213)

[G1] Sheel Ganatra, Symplectic cohomology and duality for the wrapped Fukaya category, Ph.D. Thesis, 2012.
[G2] , Symplectic cohomology and duality for the wrapped Fukaya category, 2012. Ph.D. Thesis, MIT.

Available at http://arXiv.org/abs/1304.7312.
[G3] Sheel Ganatra, Symplectic integral transforms from open-closed string maps, 2015. Available at http://

www-bcf.usc.edu/~sheelgan/materials/wrapcy1.pdf.

68

1405.2303
1405.2303
http://arxiv.org/abs/1212.3731
http://arxiv.org/abs/1212.3731
arXiv:math/0509264
arXiv:math/0509264
http://arXiv.org/abs/1304.7312
http://www-bcf.usc.edu/~sheelgan/materials/wrapcy1.pdf
http://www-bcf.usc.edu/~sheelgan/materials/wrapcy1.pdf


[G4] , Automatically generating Fukaya categories and computing quantum cohomology, 2016. available
at http://arXiv.org/abs/1605.07702.

[G5] Victor Ginzburg, Lectures on Noncommutative Geometry (2005), available at arXiv:math/0506603.

[GPS1] Sheel Ganatra, Tim Perutz, and Nick Sheridan, The cyclic open-closed map and noncommutative Hodge
structures. In preparation.

[GPS2] , Mirror symmetry: from categories to curve counts, 2015. available at arXiv.org/abs/1510.03839.

[K1] Christian Kassel, Cyclic homology, comodules, and mixed complexes, J. Algebra 107 (1987), no. 1, 195–216.
MR883882 (88k:18019)

[K2] Bernhard Keller, On the cyclic homology of exact categories, J. Pure Appl. Algebra 136 (1999), no. 1, 1–56.
MR1667558 (99m:18012)

[K3] , A-infinity algebras, modules and functor categories, Trends in representation theory of algebras and

related topics, 2006, pp. 67–93. MR2258042
[K4] Maxim Kontsevich, XI Solomon Lefschetz Memorial Lecture series: Hodge structures in non-commutative

geometry, Non-commutative geometry in mathematics and physics, 2008, pp. 1–21. Notes by Ernesto Lu-

percio. MR2444365 (2009m:53236)
[KS1] M. Kontsevich and Y. Soibelman, Notes on A∞-algebras, A∞-categories and non-commutative geometry,

Homological mirror symmetry, 2009, pp. 153–219. MR2596638

[KS2] Maxim Kontsevich and Yan Soibelman, Notes on A-infinity algebras, A-infinity categories and non-
commutative geometry. I, 2006. Available at arXiv.org/abs/math/0606241.

[KSV] Takashi Kimura, Jim Stasheff, and Alexander A. Voronov, On operad structures of moduli spaces and string

theory, Comm. Math. Phys. 171 (1995), no. 1, 1–25. MR1341693 (96k:14019)
[KV] Maxim Kontsevich and Yannis Vlassopoulos. in preparation.

[L1] K. Lefevre, Sur les a∞-catégories, Ph.D. Thesis, 2002.
[L2] Jean-Louis Loday, Cyclic homology, Grundlehren der Mathematischen Wissenschaften [Fundamental Prin-

ciples of Mathematical Sciences], vol. 301, Springer-Verlag, Berlin, 1992. Appendix E by Maŕıa O. Ronco.
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