Homework 2

EXERCISE 2.1. Give a careful proof of De Morgan's identities: for X, $\{A_i\}_{i \in I}$ sets, the following two equalities hold:

$$X \setminus \bigcup_{i \in I} A_i = \bigcap_{i \in I} (X \setminus A_i)$$
$$X \setminus \bigcap_{i \in I} A_i = \bigcup_{i \in I} (X \setminus A_i).$$

Solution. Suppose $x \in X \setminus \bigcup_{i \in I} A_i$. This means that $x \in X$ but $x \notin \bigcup_{i \in I} A_i$. The latter means that $x \notin A_i$ for every $i \in I$. We conclude that $x \in X \setminus A_i$ for every $i \in I$, i.e. $x \in \bigcap_{i \in I} (X \setminus A_i)$.

Conversely, if $x \in \bigcap_{i \in I} (X \setminus A_i)$, then this means that $x \in X \setminus A_i$ for every $i \in I$. That is, $x \in X$ and $x \notin A_i$ for all $i \in I$. The latter is equivalent to $x \notin \bigcup_{i \in I} A_i$. So $x \in X \setminus \bigcup_{i \in I} A_i$.

Similarly, suppose $x \in X \setminus \bigcap_{i \in I} A_i$. Then $x \in X$ but $x \notin \bigcap_{i \in I} A_i$. So there is some $j \in I$ such that $x \notin A_j$. For this j we then have $x \in X \setminus A_j \subset \bigcup_{i \in I} (X \setminus A_i)$.

Conversely, if $x \in \bigcup_{i \in I} (X \setminus A_i)$, then there is some $j \in I$ such that $x \in X \setminus A_j$, i. e. $x \in X$ but $x \notin A_j$. This implies that $x \notin \bigcap_{i \in I} A_i$ because $A_j \supset \bigcap_{i \in I} A_i$. Hence, $x \in X \setminus \bigcap_{i \in I} A_i$.

EXERCISE 2.2. Let *X* be any set. Show that there is a bijection of the power set of *X* (the set of subsets of *X*)

$$\mathcal{P}(X) = \{A : A \subset X\}$$

and the set of maps from X to $\{0, 1\}$,

$Maps(X, \{0, 1\}).$

Solution. Define a map $f: \text{Maps}(X, \{0, 1\}) \longrightarrow \mathcal{P}(X)$ by setting $f(\chi) = \{x \in X : \chi(x) = 1\}$ for a function $\chi \in \text{Maps}(X, \{0, 1\})$. Conversely, given a subset $A \subset X$ define a function $\chi_A: X \longrightarrow \{0, 1\}$ by

$$\chi_A(x) = \begin{cases} 0 & \text{if } x \notin A \\ 1 & \text{if } x \in A. \end{cases}$$

Define $g: \mathcal{P}(X) \longrightarrow \text{Maps}(X, \{0, 1\})$ by $g(A) = \chi_A$. We check that f and g are inverse functions:

$$f(g(A)) = f(\chi_A) = \{x \in X : \chi_A(x) = 1\} = \{x \in X : x \in A\} = A$$
$$g(f(\chi))(x) = \begin{cases} 0 & \text{if } x \notin f(\chi), \text{ i. e. } \chi(x) = 0\\ 1 & \text{if } x \in f(\chi), \text{ i. e. } \chi(x) = 1, \end{cases}$$

for $A \subset X$ and $\chi \in Maps(X, \{0, 1\})$. We conclude that f and g are inverse bijections $Maps(X, \{0, 1\}) \cong \mathcal{P}(X)$.

EXERCISE 2.3. Let *X* be a set. Complete the proof that the *discrete metric* $d_{\text{discrete}} : X \times X \longrightarrow [0, +\infty)$ on *X*, defined as

$$d_{\text{discrete}}(x,y) = \begin{cases} 0 & \text{if } x = y \\ 1 & \text{if } x \neq y, \end{cases}$$

is indeed a metric.

Then, show that every subset $U \subseteq X$ is an open set with respect to the discrete metric.

Solution. We prove the triangle inequality for d_{discrete} . So suppose, $x, y, z \in X$. There are three cases: x = y = z, or exactly two points of x, y, z are equal, or x, y and z are distinct points. In the first case, we have

$$0 = d_{\text{discrete}}(x, y) + d_{\text{discrete}}(y, z) \ge d_{\text{discrete}}(x, z) = 0.$$

In the second case, if say x = y but $y \neq z$, we have

$$1 = d_{\text{discrete}}(x, y) + d_{\text{discrete}}(y, z) \ge d_{\text{discrete}}(x, z) = 1$$

and if $x \neq y$ but x = z, then

$$1 = d_{\text{discrete}}(x, y) + d_{\text{discrete}}(y, z) \ge d_{\text{discrete}}(x, z) = 0.$$

Finally, in the third case, we have

$$2 = d_{\text{discrete}}(x, y) + d_{\text{discrete}}(y, z) \ge d_{\text{discrete}}(x, z) = 1.$$

Now, let $U \subseteq X$ be a subset and let $x \in U$. Observe that $B_{d_{\text{discrete}}}(x, 1/2) = \{x\} \subseteq U$. So U is a neighborhood of x. But since x was arbitrary we conclude that U is a neighborhood of each of its points, that is, U is open.

Exercise 2.4.

(i) Consider \mathbb{R}^n with its *Euclidean metric*

$$d_{\rm Eu}(\mathbf{x},\mathbf{y}) = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2}$$

and its taxi-cab metric

$$d_{\text{Ta}}(\mathbf{x}, \mathbf{y}) = |x_1 - y_1| + |x_2 - y_2| + \dots + |x_n - y_n|.$$

Show that there exist positive constants c_1, c_2 such that, for any points $x, y \in \mathbb{R}^n$,

$$c_1 d_{\mathrm{Eu}}(\mathbf{x}, \mathbf{y}) \leq d_{\mathrm{Ta}}(\mathbf{x}, \mathbf{y}) \leq c_2 d_{\mathrm{Eu}}(\mathbf{x}, \mathbf{y}).$$

Note that c_1 and c_2 are *not* allowed to depend on **x** and **y** above.

Using the above fact (which you may want to call a Lemma), prove that a subset $U \subset \mathbb{R}^n$ is open with respect to the d_{Eu} metric if and only if U is open with respect to the d_{Ta} metric. In other words, d_{Eu} and d_{Ta} have the same open sets, or *induce the same topology*.¹

(ii) More generally, given an integer $p \ge 1$, define

$$d_p(\mathbf{x}, \mathbf{y}) \coloneqq \left[\sum_{i=1}^n |x_i - y_i|^p\right]^{1/p}$$

You may assume that d_p is a metric. Show using similar methods that d_p also induces the same topology as d_{Eu} .

Solution.

(i) First, let's assume that d_{Eu} and d_{Ta} are in fact equivalent and using this show that they induce the same topology on \mathbb{R}^n . For this, assume that $U \subset \mathbb{R}^n$ is open with respect to d_{Eu} and let $x \in U$. There is some $\varepsilon > 0$ such that $B_{d_{\text{Eu}}}(x, \varepsilon) \subset U$. Now, suppose that $y \in B_{d_{\text{Ta}}}(x, c_1 \varepsilon)$. Then $d_{\text{Eu}}(x, y) \leq 1/c_1 \cdot d_{\text{Ta}}(x, y) < \varepsilon$ and therefore $y \in B_{d_{\text{Eu}}}(x, \varepsilon) \subset U$. So, $B_{d_{\text{Ta}}}(x, c_1 \varepsilon) \subset U$. We conclude that U is open with respect to d_{Ta} as well.

Conversely, if $U \subset \mathbb{R}^n$ is open with respect to d_{Ta} and $x \in U$, let $\varepsilon > 0$ be small enough such that $B_{d_{\text{Ta}}}(x,\varepsilon) \subset U$. Suppose $y \in B_{d_{\text{Eu}}}(x,\varepsilon/c_2)$. Then $d_{\text{Ta}}(x,y) \leq c_2 d_{\text{Eu}}(x,y) < \varepsilon$ and therefore $y \in B_{d_{\text{Ta}}}(x,\varepsilon)$. Hence, $B_{d_{\text{Eu}}}(x,\varepsilon/c_2) \subset U$ and we conclude that U is open with respect to d_{Eu} as well.

¹We say a pair of metric d_1 , d_2 induce the same topology on a set X if they have the same open sets, meaning for any subset $U \subset X$, U is open with respect to d_1 if and only if it is open with respect to d_2 .

To prove that d_{Eu} and d_{Ta} are in fact equivalent, note that for $a, b \in \mathbb{R}$ we have $0 \le (a-b)^2 = a^2 - 2ab + b^2$ and therefore $2ab \le a^2 + b^2$. Then, using that $2|x_i - y_i||x_j - y_j| \ge 0$ for all $1 \le i, j \le n$, we can compute

$$(x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} \leq (x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} + \sum_{\substack{i,j=1 \ i < j}}^{n} 2|x_{i} - y_{i}||x_{j} - y_{j}| =$$

$$= [|x_{1} - y_{1}| + \dots + |x_{n} + y_{n}|]^{2} = d_{\text{Ta}}(\mathbf{x}, \mathbf{y})^{2} =$$

$$= (x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} + \sum_{\substack{i,j=1 \ i < j}}^{n} 2|x_{i} - y_{i}||x_{j} - y_{j}| \leq$$

$$\leq (x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} + \sum_{\substack{i,j=1 \ i < j}}^{n} \left[(x_{i} - y_{i})^{2} + (x_{j} - y_{j})^{2} \right] \leq$$

$$\leq n^{2} \left[(x_{1} - y_{1})^{2} + \dots + (x_{n} - y_{n})^{2} \right].$$

Taking square roots this implies $d_{\text{Eu}}(\mathbf{x}, \mathbf{y}) \le d_{\text{Ta}}(\mathbf{x}, \mathbf{y}) \le n d_{\text{Eu}}(\mathbf{x}, \mathbf{y})$. (ii) For $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$ let $z_{\text{max}} = \max_i |x_i - y_i|$. Compute:

$$\sum_{i=1}^{n} |x_i - y_i|^p \le n \, z_{\max}^p \le n \left[\sum_{i=1}^{n} |x_i - y_i| \right]^p$$
$$\sum_{i=1}^{n} |x_i - y_i|^p \ge z_{\max}^p \ge \left[\frac{1}{n} \sum_{i=1}^{n} |x_i - y_i| \right]^p$$

Combining these and taking p^{th} roots, we conclude that $n^{-1} d_{\text{Ta}}(\mathbf{x}, \mathbf{y}) \leq d_p(\mathbf{x}, \mathbf{y}) \leq n^{1/p} d_{\text{Ta}}(\mathbf{x}, \mathbf{y})$. So d_p and d_{Ta} are equivalent metrics and by the same argument as in part (i) they induce the same topologies on \mathbb{R}^n . Hence, d_p also induces the same topology as d_{Eu} .

Exercise 2.5.

(i) Let $x \in \mathbb{Q}$ be a rational number. In class, we defined the 2–*adic norm*

$$|x|_{2} = \begin{cases} 2^{-n} & \text{if } x \neq 0 \text{ and } n \in \mathbb{Z} \text{ is the unique integer such that } x = 2^{n} \frac{p}{q} \text{ with } p \text{ and } q \text{ odd} \\ 0 & \text{if } x = 0 \end{cases}$$

and the 2-adic metric

$$d_2 \colon \mathbb{Q} \times \mathbb{Q} \longrightarrow [0,\infty)$$

by $d_2(x, y) = |x - y|_2$. Prove that (\mathbb{Q}, d_2) is a metric space. In fact, prove that d_2 satisfies conditions (i) and (ii) of being a metric, as well as a condition *stronger* than (iii):

For all
$$x, y, z \in \mathbb{Q}$$
, $d_2(x, z) \le \max(d_2(x, y), d_2(y, z))$.

Metrics satisfying this stronger condition are sometimes called *ultrametrics* or *non-Archimedian metrics*. (ii) Prove that for any $x \in \mathbb{Q}$, there is some r > 0 such that the complement $\mathbb{Q} \setminus B_{d_2}(x, r)$ is an open set.²

In contrast, note that in the Euclidean metric $\mathbb{R} \setminus (x - r, x + r)$ is *never* open. *Solution.*

²Recall that $B_d(x, r)$ is the *ball of radius r centered at x in the metric d*, which we defined in class. In short, we defined $B_d(x, r) = \{y \in X : d(x, y) < r\}$.

(i) First note that |x - y|₂ = 0 if and only if x = y because 2⁻ⁿ ≠ 0 for all n ∈ Z. Also, if |x - y|₂ = 2⁻ⁿ, then x - y = 2ⁿ p/q for some odd p and q. So, y - x = 2ⁿ p/q and therefore |y - x|₂ = 2⁻ⁿ = |x - y|₂. Now, suppose a, b ∈ Q are nonzero rational numbers with |a|₂ = 2⁻ⁿ and |b|₂ = 2^{-m}. This means that a = 2ⁿ p/q and b = 2^m p/q' for odd integers p, p', q, q' ∈ Z. Assume without loss of generality that |a|₂ ≥ |b|₂. Then m ≥ n and therefore

$$a + b = 2^{n} \frac{p}{q} + 2^{m} \frac{p'}{q'} = 2^{n} \left[\frac{p}{q} + 2^{m-n} \frac{p'}{q'} \right] = 2^{n} \frac{pq' + 2^{m-n}p'q}{qq'}$$

Because q and q' are both odd, the denominator qq' will be odd as well. Because of our assumption that $m - n \ge 0$ the numerator $pq' + 2^{m-n}p'q$ is an integer. It follows that $pq' + 2^{m-n}p'q = 2^{\ell}r$ for $\ell \ge 0$ and $r \in \mathbb{Z}$ odd. Consequently, $a + b = 2^{n+\ell}\frac{r}{qq'}$ and $|a + b|_2 = 2^{-n-\ell} \le 2^{-n} = \max\{|a|_2, |b|_2\}$. We conclude that

$$d_2(x,z) = |x-z|_2 = |x-y+y-z|_2 \le \max\{|x-y|_2, |y-z|_2\} = \max\{d_2(x,y), d_2(y,z)\}$$

for $x, y, z \in \mathbb{Q}$.

(ii) Let $x \in \mathbb{Q}$ and suppose r > 0. Suppose $y \in \mathbb{Q} \setminus B_{d_2}(x, r)$ and $z \in B_{d_2}(y, r)$. The ultrametric triangle inequality from part (i) implies that

$$r \leq |x - y|_2 = |x - z - y + z|_2 \leq \max\{|x - z|_2, |y - z|_2\}.$$

For sake of contradiction, suppose that $|x-z|_2 \le |y-z|_2$. Then we would have $r \le |x-y|_2 \le |y-z|_2 < r$ which is impossible. So it must be the case that $|y-z|_2 \le |x-z|_2$. But then $r \le |x-y|_2 \le |x-z|_2$ and therefore $z \in \mathbb{Q} \setminus B(x, r)$. Since z was arbitrary we conclude that $B_{d_2}(y, r) \subset \mathbb{Q} \setminus B_{d_2}(x, r)$ and, because $y \in \mathbb{Q} \setminus B_{d_2}(x, r)$ was arbitrary as well, it follows that $\mathbb{Q} \setminus B_{d_2}(x, r)$ is open.

EXERCISE 2.6. If (M_1, d_1) and (M_2, d_2) are metric spaces, then one can define a distance function *d* on the Cartesian product $M_1 \times M_2$ by

$$d((m, n), (m', n')) = d_1(m, m') + d_2(n, n').$$

- (i) Show that d defines a metric on $M_1 \times M_2$, called the (standard) product metric.
- (ii) Prove that if $U_1 \subset M_1$ is open and $U_2 \subset M_2$ is open, then $U_1 \times U_2 \subset M_1 \times M_2$ is open. Conversely, is it true that every open set $V \subset M_1 \times M_2$ is of the form $U_1 \times U_2$ for some U_1, U_2 ?

Solution.

(i) Because $d_1(m, m')$ and $d_2(n, n')$ are both always non-negative, d((m, n), (m', n')) = 0 is equivalent to $d_1(m, m') = 0$ and $d_2(n, n') = 0$. But this is equivalent to (m, n) = (m', n'). Also,

$$d((m, n), (m', n')) = d_1(m, m') + d_2(n, n') = d_1(m', m) + d_2(n', n) = d((m', n'), (m, n)).$$

Finally, suppose that $(m, n), (m', n'), (m'', n'') \in M_1 \times M_2$. Then by the triangle inequalities for d_1 and d_2 we conclude

$$d((m, n), (m'', n'')) = d_1(m, m'') + d_2(n, n'') \le \le d_1(m, m') + d_1(m', m'') + d_2(n, n') + d_2(n', n'') = = d((m, n), (m', n')) + d((m', n'), (m'', n'')).$$

(ii) Suppose that $U_1 \subset M_1$ and $U_2 \subset M_2$ are both open and let $(m, n) \in U_1 \times U_2$. Let $\varepsilon_1 > 0$ be small enough such that $B_{d_1}(m, \varepsilon_1) \subset U_1$ and similarly let $\varepsilon_2 > 0$ be small enough such that $B_{d_2}(n, \varepsilon_2) \subset U_2$. Pick any $\varepsilon > 0$ with $\varepsilon < \min\{\varepsilon_1, \varepsilon_2\}$ and suppose $(x, y) \in B_d((m, n), \varepsilon)$. Then

$$d_1(m, x) \le d_1(m, x) + d_2(n, y) = d((m, n), (x, y)) < \varepsilon < \varepsilon_1$$

$$d_2(n, y) \le d_1(m, x) + d_2(n, y) = d((m, n), (x, y)) < \varepsilon < \varepsilon_2$$

and therefore $x \in U_1$ and $y \in U_2$. So, $(x, y) \in U_1 \times U_2$ and we conclude that $B_d((m, n), \varepsilon) \subset U_1 \times U_2$. This implies that $U_1 \times U_2$ is open since $(m, n) \in U_1 \times U_2$ was arbitrary.

The converse isn't true. For example $(0, 1) \times (0, 1) \cup (2, 3) \times (2, 3) \subset \mathbb{R} \times \mathbb{R}$ is open but not a cartesian product of open sets $U_1, U_2 \subset \mathbb{R}$.