
Homework 2

Exercise 2.1. Give a careful proof of De Morgan’s identities: for X , {Ai }i ∈I sets, the following two equalities
hold:

X r
⋃
i ∈I

Ai =
⋂
i ∈I

(X rAi )

X r
⋂
i ∈I

Ai =
⋃
i ∈I

(X rAi ).

Solution. Suppose x ∈ X r
⋃

i ∈I Ai . This means that x ∈ X but x <
⋃

i ∈I Ai . The latter means that x < Ai for
every i ∈ I . We conclude that x ∈ X rAi for every i ∈ I , i. e. x ∈

⋂
i ∈I (X rAi ).

Conversely, if x ∈
⋂

i ∈I (X rAi ), then this means that x ∈ X rAi for every i ∈ I . That is, x ∈ X and x < Ai
for all i ∈ I . The latter is equivalent to x <

⋃
i ∈I Ai . So x ∈ X r

⋃
i ∈I Ai .

Similarly, suppose x ∈ X r
⋂

i ∈I Ai . Then x ∈ X but x <
⋂

i ∈I Ai . So there is some j ∈ I such that x < Aj .
For this j we then have x ∈ X rAj ⊂

⋃
i ∈I (X rAi ).

Conversely, if x ∈
⋃

i ∈I (X rAi ), then there is some j ∈ I such that x ∈ X rAj , i. e. x ∈ X but x < Aj . This
implies that x <

⋂
i ∈I Ai because Aj ⊃

⋂
i ∈I Ai . Hence, x ∈ X r

⋂
i ∈I Ai .

Exercise 2.2. Let X be any set. Show that there is a bijection of the power set of X (the set of subsets of X )

P(X ) = {A : A ⊂ X }

and the set of maps from X to {0, 1},
Maps(X , {0, 1}).

Solution. De�ne a map f : Maps(X , {0, 1}) P(X ) by setting f (χ ) = {x ∈ X : χ (x ) = 1} for a function
χ ∈ Maps(X , {0, 1}). Conversely, given a subset A ⊂ X de�ne a function χA : X {0, 1} by

χA (x ) =



0 if x < A
1 if x ∈ A.

De�ne д : P(X ) Maps(X , {0, 1}) by д(A) = χA. We check that f and д are inverse functions:

f (д(A)) = f (χA) = {x ∈ X : χA (x ) = 1} = {x ∈ X : x ∈ A} = A

д( f (χ )) (x ) =



0 if x < f (χ ), i. e. χ (x ) = 0
1 if x ∈ f (χ ), i. e. χ (x ) = 1,

for A ⊂ X and χ ∈ Maps(X , {0, 1}). We conclude that f and д are inverse bijections Maps(X , {0, 1}) � P(X ).

Exercise 2.3. Let X be a set. Complete the proof that the discrete metric ddiscrete : X × X [0. +∞) on X ,
de�ned as

ddiscrete (x ,y) =



0 if x = y
1 if x , y,

is indeed a metric.
Then, show that every subset U ⊂ X is an open set with respect to the discrete metric.

Solution. We prove the triangle inequality forddiscrete. So suppose, x ,y, z ∈ X . There are three cases: x = y = z,
or exactly two points of x , y, z are equal, or x , y and z are distinct points. In the �rst case, we have

0 = ddiscrete (x ,y) + ddiscrete (y, z) ≥ ddiscrete (x , z) = 0.
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In the second case, if say x = y but y , z, we have

1 = ddiscrete (x ,y) + ddiscrete (y, z) ≥ ddiscrete (x , z) = 1

and if x , y but x = z, then

1 = ddiscrete (x ,y) + ddiscrete (y, z) ≥ ddiscrete (x , z) = 0.

Finally, in the third case, we have

2 = ddiscrete (x ,y) + ddiscrete (y, z) ≥ ddiscrete (x , z) = 1.

Now, let U ⊂ X be a subset and let x ∈ U . Observe that Bddiscrete (x , 1/2) = {x } ⊂ U . SoU is a neighborhood
of x . But since x was arbitrary we conclude that U is a neighborhood of each of its points, that is, U is open.

Exercise 2.4.
(i) Consider Rn with its Euclidean metric

dEu (x, y) =
√
(x1 − y1)2 + · · · + (xn − yn )2

and its taxi-cab metric

dTa (x, y) = |x1 − y1 | + |x2 − y2 | + · · · + |xn − yn |.

Show that there exist positive constants c1, c2 such that, for any points x ,y ∈ Rn ,

c1dEu (x, y) ≤ dTa (x, y) ≤ c2dEu (x, y).

Note that c1 and c2 are not allowed to depend on x and y above.
Using the above fact (which you may want to call a Lemma), prove that a subset U ⊂ Rn is open with
respect to the dEu metric if and only ifU is open with respect to the dTa metric. In other words, dEu and
dTa have the same open sets, or induce the same topology.1

(ii) More generally, given an integer p ≥ 1, de�ne

dp (x, y) B


n∑
i=1
|xi − yi |

p


1/p

You may assume that dp is a metric. Show using similar methods that dp also induces the same topology
as dEu.

Solution.
(i) First, let’s assume that dEu and dTa are in fact equivalent and using this show that they induce the same

topology on Rn . For this, assume that U ⊂ Rn is open with respect to dEu and let x ∈ U . There is some
ε > 0 such that BdEu (x , ε ) ⊂ U . Now, suppose that y ∈ BdTa (x , c1ε ). Then dEu (x ,y) ≤ 1/c1 ·dTa (x ,y) < ε
and therefore y ∈ BdEu (x , ε ) ⊂ U . So, BdTa (x , c1ε ) ⊂ U . We conclude that U is open with respect to dTa
as well.
Conversely, if U ⊂ Rn is open with respect to dTa and x ∈ U , let ε > 0 be small enough such that
BdTa (x , ε ) ⊂ U . Suppose y ∈ BdEu (x , ε/c2). Then dTa (x ,y) ≤ c2dEu (x ,y) < ε and therefore y ∈ BdTa (x , ε ).
Hence, BdEu (x , ε/c2) ⊂ U and we conclude that U is open with respect to dEu as well.

1We say a pair of metric d1, d2 induce the same topology on a set X if they have the same open sets, meaning for any subset U ⊂ X ,
U is open with respect to d1 if and only if it is open with respect to d2.
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To prove thatdEu anddTa are in fact equivalent, note that for a,b ∈ Rwe have 0 ≤ (a−b)2 = a2−2ab+b2
and therefore 2ab ≤ a2 +b2. Then, using that 2|xi −yi | |x j −yj | ≥ 0 for all 1 ≤ i, j ≤ n, we can compute

(x1 − y1)
2 + · · · + (xn − yn )

2 ≤ (x1 − y1)
2 + · · · + (xn − yn )

2 +

n∑
i, j=1
i<j

2|xi − yi | |x j − yj | =

= [|x1 − y1 | + · · · + |xn + yn |]2 = dTa (x, y)2 =

= (x1 − y1)
2 + · · · + (xn − yn )

2 +

n∑
i, j=1
i<j

2|xi − yi | |x j − yj | ≤

≤ (x1 − y1)
2 + · · · + (xn − yn )

2 +

n∑
i, j=1
i<j

[
(xi − yi )

2 + (x j − yj )
2
]
≤

≤ n2
[
(x1 − y1)

2 + · · · + (xn − yn )
2
]
.

Taking square roots this implies dEu (x, y) ≤ dTa (x, y) ≤ ndEu (x, y).
(ii) For x, y ∈ Rn let zmax = maxi |xi − yi |. Compute:

n∑
i=1
|xi − yi |

p ≤ n z
p
max ≤ n



n∑
i=1
|xi − yi |



p

n∑
i=1
|xi − yi |

p ≥ z
p
max ≥



1
n

n∑
i=1
|xi − yi |



p

Combining these and taking pth roots, we conclude that n−1 dTa (x, y) ≤ dp (x, y) ≤ n1/p dTa (x, y). So dp
and dTa are equivalent metrics and by the same argument as in part (i) they induce the same topologies
on Rn . Hence, dp also induces the same topology as dEu.

Exercise 2.5.
(i) Let x ∈ Q be a rational number. In class, we de�ned the 2–adic norm

|x |2 =



2−n if x , 0 and n ∈ Z is the unique integer such that x = 2n p
q with p and q odd

0 if x = 0

and the 2–adic metric
d2 : Q × Q [0,∞)

by d2 (x ,y) = |x − y |2. Prove that (Q,d2) is a metric space. In fact, prove that d2 satis�es conditions (i)
and (ii) of being a metric, as well as a condition stronger than (iii):

For all x ,y, z ∈ Q, d2 (x , z) ≤ max(d2 (x ,y),d2 (y, z)).

Metrics satisfying this stronger condition are sometimes called ultrametrics or non-Archimedian metrics.
(ii) Prove that for any x ∈ Q, there is some r > 0 such that the complement Q r Bd2 (x , r ) is an open set.2

In contrast, note that in the Euclidean metric R r (x − r ,x + r ) is never open.
Solution.

2Recall that Bd (x , r ) is the ball of radius r centered at x in the metric d , which we de�ned in class. In short, we de�ned Bd (x , r ) =
{y ∈ X : d (x ,y) < r }.
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(i) First note that |x − y |2 = 0 if and only if x = y because 2−n , 0 for all n ∈ Z. Also, if |x − y |2 = 2−n ,
then x − y = 2n p

q for some odd p and q. So, y − x = 2n −pq and therefore |y − x |2 = 2−n = |x − y |2.
Now, suppose a,b ∈ Q are nonzero rational numbers with |a |2 = 2−n and |b |2 = 2−m . This means
that a = 2n p

q and b = 2m p′

q′ for odd integers p,p ′,q,q′ ∈ Z. Assume without loss of generality that
|a |2 ≥ |b |2. Thenm ≥ n and therefore

a + b = 2n
p

q
+ 2m

p ′

q′
= 2n

[
p

q
+ 2m−n

p ′

q′

]
= 2n

pq′ + 2m−np ′q
qq′

Because q and q′ are both odd, the denominator qq′ will be odd as well. Because of our assumption
thatm − n ≥ 0 the numerator pq′ + 2m−np ′q is an integer. It follows that pq′ + 2m−np ′q = 2`r for ` ≥ 0
and r ∈ Z odd. Consequently, a + b = 2n+` r

qq′ and |a + b |2 = 2−n−` ≤ 2−n = max{|a |2, |b |2}.
We conclude that

d2 (x , z) = |x − z |2 = |x − y + y − z |2 ≤ max{|x − y |2, |y − z |2} = max{d2 (x ,y),d2 (y, z)}

for x ,y, z ∈ Q.
(ii) Let x ∈ Q and suppose r > 0. Suppose y ∈ Q r Bd2 (x , r ) and z ∈ Bd2 (y, r ). The ultrametric triangle

inequality from part (i) implies that

r ≤ |x − y |2 = |x − z − y + z |2 ≤ max{|x − z |2, |y − z |2}.

For sake of contradiction, suppose that |x−z |2 ≤ |y−z |2. Then we would have r ≤ |x−y |2 ≤ |y−z |2 < r
which is impossible. So it must be the case that |y − z |2 ≤ |x − z |2. But then r ≤ |x − y |2 ≤ |x − z |2 and
therefore z ∈ QrB (x , r ). Since z was arbitrary we conclude that Bd2 (y, r ) ⊂ QrBd2 (x , r ) and, because
y ∈ Q r Bd2 (x , r ) was arbitrary as well, it follows that Q r Bd2 (x , r ) is open.

Exercise 2.6. If (M1,d1) and (M2,d2) are metric spaces, then one can de�ne a distance function d on the
Cartesian product M1 ×M2 by

d ((m,n), (m′,n′)) = d1 (m,m
′) + d2 (n,n

′).

(i) Show that d de�nes a metric on M1 ×M2, called the (standard) product metric.
(ii) Prove that if U1 ⊂ M1 is open and U2 ⊂ M2 is open, then U1 ×U2 ⊂ M1 ×M2 is open. Conversely, is it

true that every open set V ⊂ M1 ×M2 is of the form U1 ×U2 for some U1, U2?
Solution.

(i) Because d1 (m,m′) and d2 (n.n
′) are both always non-negative, d ((m,n), (m′,n′)) = 0 is equivalent to

d1 (m,m
′) = 0 and d2 (n,n

′) = 0. But this is equivalent to (m,n) = (m′,n′). Also,

d ((m,n), (m′,n′)) = d1 (m,m
′) + d2 (n,n

′) = d1 (m
′,m) + d2 (n

′,n) = d ((m′,n′), (m,n)).

Finally, suppose that (m,n), (m′,n′), (m′′,n′′) ∈ M1 ×M2. Then by the triangle inequalities for d1 and
d2 we conclude

d ((m,n), (m′′,n′′)) = d1 (m,m
′′) + d2 (n,n

′′) ≤

≤ d1 (m,m
′) + d1 (m

′,m′′) + d2 (n,n
′) + d2 (n

′,n′′) =

= d ((m,n), (m′,n′)) + d ((m′,n′), (m′′,n′′)).

(ii) Suppose that U1 ⊂ M1 and U2 ⊂ M2 are both open and let (m,n) ∈ U1 ×U2. Let ε1 > 0 be small enough
such that Bd1 (m, ε1) ⊂ U1 and similarly let ε2 > 0 be small enough such that Bd2 (n, ε2) ⊂ U2. Pick any
ε > 0 with ε < min{ε1, ε2} and suppose (x ,y) ∈ Bd ((m,n), ε ). Then

d1 (m,x ) ≤ d1 (m,x ) + d2 (n,y) = d ((m,n), (x ,y)) < ε < ε1

d2 (n,y) ≤ d1 (m,x ) + d2 (n,y) = d ((m,n), (x ,y)) < ε < ε2
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and therefore x ∈ U1 and y ∈ U2. So, (x ,y) ∈ U1 ×U2 and we conclude that Bd ((m,n), ε ) ⊂ U1 ×U2.
This implies that U1 ×U2 is open since (m,n) ∈ U1 ×U2 was arbitrary.
The converse isn’t true. For example (0, 1) × (0, 1) ∪ (2, 3) × (2, 3) ⊂ R × R is open but not a cartesian
product of open sets U1,U2 ⊂ R.
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