
Math 113 Homework 6
Due Friday, May 17, 2013 by 4 pm

Please remember to write down your name and Stanford ID number, and to staple your
solutions. Solutions are due to the Course Assistant, Graham White, in his office, 380-380R
(either hand your solutions directly to him or leave the solutions under his door). As usual,
please justify all of your solutions and/or answers with carefully written proofs.

Book problems: Solve Axler Chapter 8 problems 22,23,27,29,30 (pages 188-191), Chapter
9 problems 3, 10 (pages 210-211).

1. Bilinear maps. Let V , W , and X be vector spaces over F. A function f : V ×W → X is
said to be bilinear if it is linear in each variable separately. That is,

f(v, cw + dw′) = cf(v,w) + df(v,w′)

and
f(av + bv′,w) = af(v,w) + bf(v′,w).

Note that if f is bilinear, then

f(v + v′,w + w′) 6= f(v,w) + f(v′,w′)!

Instead,

f(v + v′,w + w′) = f(v,w + w′) + f(v′,w + w′)

= f(v,w) + f(v,w′) + f(v′,w) + f(v′,w′)

(a) Let L(V ×W,X) denote the set of bilinear maps. Prove that L(V ×W,X) is a vector
space. Hint: it suffices to check that it’s a subspace of XV×W , the set of all maps
from V ×W to X.

(b) Let v1, . . . ,vk be a basis of V and w1, . . . ,wl be a basis of W . Prove that a bilinear
map f : V ×W → X is determined uniquely by its values on all pairs of basis ele-
ments (vi,wj). Find a basis for the space of bilinear maps V ×W → F, and thereby
calculate its dimension.

Example: Let V = P(R) denote the set of polynomials with real coefficients. Let

T : V × V → R
be the map

(p, q) 7→
∫ 1

−1
p(x)q(x)dx.

Then, T is bilinear (you should verify this, but do not need to submit it as part of
your homework assignment) Note: T has the additional property that it is symmetric
bilinear: T (p, q) = T (q, p).

We will construct many more examples of bilinear maps over the next few weeks.
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2. Complexification. In class this past week, I alluded to the fact that the classification
of real linear operators (from the existence of dimension 1 or 2 invariant subspaces to
decomposition theorems and Jordan normal form) could be deduced from the analogous
classification of complex linear operators.

Here is a rough idea: if one wants to find eigenvalues and eigenpairs for a real linear
operator T , first we should think of it as a “complex linear operator” TC. For example,
if we are in Rn, T corresponds to a matrix A in standard coordinates. We could take the
same matrix A, now thought of as consisting of complex entries, to obtain a linear oper-
ator on Cn that we can call TC. It will turn out (non-obviously) that the characteristic
polynomial of TC is the same as that of T .

Now, given TC, we can show that its non-real eigenvalues, which are the roots of of
its characteristic polynomial, must come in conjugate pairs. We can pair up factors with
conjugate roots and multiply them to get the real quadratic polynomials (and hence the
eigenpairs) appearing in the characteristic polynomial of T . Thus, the eigenvalues of
TC are related to the eigenvalues and eigenpairs of T . For example, if the characteristic
polynomial of TC has complex monomial factors

(z − 3)(z + i)(z − i)

then, by pairing the conjugate roots i and −i, we obtain the real factors of the charac-
teristic polynomial of T :

(x− 3)(x2 + 1).

Thus, in this case, the real operator T has an eigenvalue 3 and an eigenpair (0, 1).

So far, this has been a vague sketch, but we can now begin to make such an approach
more precise. The first step is to associate to a real vector space and a real linear operator
a natural complex vector space and complex linear operator, which will have the “same”
matrix. This is a process known as complexification.

Here is a formal definition: Given a real vector space V , we define its complexifica-
tion VC to be, as a real vector space,

VC := V ⊕ V.

where ⊕ denotes the formal direct sum from last week. To aid in intuition, we refer to
an element of the complexification not as v ⊕ v′ but rather as

v ⊕ iv′.

We inserted an i above to indicate that the second copy of V should be thought of as the
imaginary part, and the first copy should be thought of as the real part.

Addition in VC is the usual addition. In order for VC to be a complex vector space,
we must define multiplication by a complex scalar. Define the product

(a+ bi) · (v ⊕ iv′) := (av − bv′)⊕ i(av′ + bv).
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This product agrees with the usual multiplication rules for complex numbers, if we think
of the v′ component of (v ⊕ iv′) as imaginary.

(a) Verify that VC is indeed a vector space over C. (Hint: some of the axioms will hold
automatically, because you know that VC = V ⊕ V is already a vector space over R.)
Construct an isomorphism (Rn)C ∼= Cn.

(b) Elements v ∈ V give rise to elements in VC (the corresponding element is v⊕ i0, but
when it is implicit, we will simply also call the associated elements v). Prove that if
v1, . . . ,vn is a basis of V (over R), then v1, . . . ,vn is also a basis of VC (over C). Note
that VC thus has dimension n as a complex vector space (even though its dimension
as a real vector space is 2n).

(c) Now, suppose we are given a linear map T : V → V . Construct a map

TC : VC → VC

extending T (i.e. it agrees with T on the real subspace V ⊕{0}), and prove that it is
linear over C. Prove that

M(T,v) =M(TC,v)

where v on the left is a basis of V , and v is the same basis thought of as a basis of
VC. TC is called the complexification of the linear map T .

(d) Recall that complex numbers come equipped with an operation called conjugation,
denoted by

a+ bi := a− bi.
Conjugation distinguishes real elements, the unique elements λ for which λ̄ = λ.

We can emulate this operation for the complexification of a vector space, in a manner
as follows.
First, map between complex vector spaces

T : V → W

is said to be complex anti-linear if it is additive, but the homogeneity condition is
modified by complex conjugation:

T (c · v) = c̄Tw.

Now, given a real vector space V , consider the following map on its complexification
VC, which we also call conjugation:

Conj := (·) : VC → VC

v ⊕ iv′ 7→ v ⊕ i(−v′).

Prove that this is a complex anti-linear map. If T : VC → VC is any complex linear
map, prove that

T̄ := Conj ◦ T ◦ Conj : VC → VC
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is also complex linear (note by definition that T̄ (v) := Tv). If TC denotes the com-
plexification of the real linear map T , what is the relationship between T̄C and TC?
(you can compare their effect on a basis v1, . . . ,vn of VC which comes from one on V ).

(e) Now, we can finally put all of this together, and understand the relation to eigenvalues.
Let us begin with a linear map

T : V → V

on a real, finite-dimensional vector space. Consider the complexified map

TC : VC → VC,

and now suppose
w = v1 ⊕ iv2

is an eigenvector of TC with eigenvalue λ (with both v1 6= 0 and and v2 6= 0). Prove
that

w = v1 ⊕ i(−v2)

is also an eigenvector of TC, this time with eigenvalue λ. Conclude that if λ is not
real, the real subspace

U := span(v1,v2) ⊂ V

is a 2-dimensional T -invariant subspace of V with associated (real) eigenpair (−(λ+
λ̄), λλ̄).

Recall: An eigenpair (α, β) of T is said to be associated to a real 2-dimensional
subspace U if (T 2 + αT + βI)|U = 0).

Hint: (1) U arises as the real part of span(w,w). (2) Note that on the level of
complexified operators,

(T 2
C − (λ+ λ̄)TC + (λλ̄)I) = (TC − λI)(TC − λ̄I).

(f) Why must v1 and v2 both not equal zero if λ is not real? If λ is a real eigenvalue
of TC, and w = v1 ⊕ iv2 is the associated eigenvector, prove that there exists a λ
eigenvector of T . (Hint: There are two cases. The first is if one of v1 or v2 equals
0. The second case is if both are non-zero, in which case you can try to apply the
previous section).

Conclude that because TC always has an eigenvalue, T always has a dimension 1 or 2
invariant subspace.

Remark: An identical conjugate-pairs correspondence holds for generalized eigen-
vectors, for the same reason. Thus, generalized eigenspaces for non-real eigenvalues
come in conjugate pairs. One consequence is that the decomposition theorem for
real operators (into generalized eigenspaces and generalized eigen-pair spaces) can be
deduced from that for complex operators.
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Also, this will imply that the characteristic polynomial of T (as a real linear map) is
equal to the characteristic polynomial of TC. Going even further, one could use the
existence of a Jordan basis for TC to deduce the corresponding result for the real case.
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