
Math 113 Supplementary Notes: Understanding the
Cross Product

If you have taken a computational linear algebra course, you may have learned of a special
vector-product on R3, the cross product, denoted ×. This product is defined by an explicit
formula

(x1, x2, x3)× (y1, y2, y3) = (x2y3 − y3x2, x3y1 − x1y3, x1y2 − x2y1),
and satisfies some crucial properties:

• If v and w are linearly dependent, then their cross product is zero,
• The map (v,w) 7→ v ×w is bilinear,
• v ×w is always orthogonal to v and w.
• v ×w = −w × v, so the cross product is in fact an alternating bilinear product,
• The Euclidean norm ||v×w|| is ||v||||w|| sin θ, where θ is the “angle between v and
w”. In other words, this norm is the Euclidean area of the parallelogram determined
by v and w.
• The direction that v ×w points in along the line orthogonal to span(v,w) can be

calculated using a “right hand rule.”

At first glance, the cross product is mysterious—and it is not at all clear why it should
only exist on R3 (and other 3-dimensional vector spaces, it will turn out), but not in higher
dimension! On the other hand, the fact that cross products are alternating bilinear should
suggest a relationship to the wedge product.

Let’s now explain. Let V be a vector space of dimension 3, and v, w a pair of vectors.
We can then take the wedge product

v ∧w ∈
∧

2V,

Now let’s notice that

dim(
∧

2V ) =

(
3

2

)
= 3 = dim(V );

which crucially uses the fact that V is 3-dimensional (otherwise the dimension of
∧2 V is

much bigger than that of V !). Thus, if we had an isomorphism

? :
∧

2 ∼−→ V

we could compose this map with the exterior product

ψ : V × V −→
∧

2V

to get an alternating bilinear product

? ◦ ψ : V × V −→ V.

Let’s describe how we choose the isomorphism ?; this requires some additional choices which
have implicitly been made for the case of R3.

First, we need to pick an isomorphism, which we call a signed volume

vol :
∧

3V
∼−→ F.
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Since dim
∧3 V = 1, vol is determined entirely by which vector in

∧3 V is sent to 1. This
vector is called a volume form. For R3 for example, the standard choice of volume form is
the 3-blade

e1 ∧ e2 ∧ e3
Next, the signed volume gives us a map∧

2V −→ V ∗

by

v1 ∧ v2 7−→ Fv1,v2

where Fv1,v2 ∈ V ∗ is the functional

Fv1,v2(w) = vol(v1 ∧ v2 ∧w).

You can check on R3 that with the volume form specified above, this basis of 2-blades is
sent to the following set of functionals.

e1 ∧ e2 7→ 〈e3, ·〉
e2 ∧ e3 7→ 〈e1, ·〉
e1 ∧ e3 7→ 〈−e2, ·〉.

Finally, if one has an inner product on V (as we do in R3), one can identify the functional
Fv1,v2 as 〈uv1,v2 , ·〉 for a unique vector uv1,v2 . (In other words, we’re using the inner product
to give us an isomorphism from V ∗ to V ). Thus, using a signed volume and an inner
product, we have defined a map

? :
∧

2V −→ V

v1 ∧ v2 7−→ uv1,v2

as the composition ∧
2V −→ V ∗ −→ V

where the first map used the volume, and the second map used the inner product.

On R3, this map behaves as follows:

e1 ∧ e2 7→ e3

e2 ∧ e3 7→ e1

e1 ∧ e3 7→ −e2

The composed map

R3 × R3 ψ−→
∧

2R3 ?−→ R3
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is exactly the cross product, as it is alternating bilinear and satisfies

(e1, e2) 7→ e3

(e2, e3) 7→ e1

(e1, e3) 7→ −e2

Remark 1. ? is part of a more general series of maps

? :
∧

kV −→
∧

n−kV

where n = dimV , which are defined using signed volumes and inner products on
∧n−k V

(induced by inner products on V ). Collectively, these are called Hodge star operators.

With respect to inner products on
∧k V and

∧n−k V , each such map ? is an isometry.
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