
Math 171, Autumn 2007
Fall 2007 Final Exam Solutions

1) a) Assume that A is open. This implies that M \ A is closed and

therefore A ∩M \ A = A ∩ (M \ A) = ∅. Since ∂A ⊆ M \ A it follows
that A ∩ ∂A = ∅.

Assume that A∩∂A = ∅. Since A ⊆ A, it follows that A∩M \ A = ∅,
and thus M \ A = M \ A so M \ A is closed and A is open.

b) Assume that x ∈ ∂A. Since x ∈ A, there is a sequence from A

converging to x. Since x ∈ M \ A there is a sequence from M \ A
converging to x.

Assume that there is a sequence from A converging to x and there
is a sequence from M \ A converging to x. Then it follows that x ∈ A

and x ∈ M \ A so x ∈ ∂A.

2) a) If ε > 0 is chosen, then by uniform continuity there exists δ >
0 such that ρ(f(x), f(x̂)) < ε whenever x, x̂ ∈ A with d(x, x̂) < δ.
Because A is totally bounded we can find points x1, . . . , xN ∈ A so
that A ⊆ ∪N

n=1D(xn, δ). We now show that f(A) ⊆ ∪N
n=1D(f(xn), ε).

To see this, let y ∈ f(A), then there exists x ∈ A such that f(x) =
y. It follows that x ∈ D(xn, δ) and thus d(x, xn) < δ. Therefore
ρ(f(x), f(xn)) < ε and thus y = f(x) ∈ D(f(xn), ε). Thus we have
shown that f(A) ⊆ ∪N

n=1D(f(xn), ε) as required.

b) Let xn be a Cauchy sequence from M . Given ε > 0, there exists
δ > 0 so that ρ(f(x), f(x̂)) < ε for x, x̂ ∈ M with d(x, x̂) < δ. Since
xn is Cauchy there exists N so that d(xn, xm) < δ for n,m ≥ N . It
follows that ρ(f(xn), f(xm)) < ε for n,m ≥ N . Therefore the sequence
f(xn) is Cauchy in N .

Let f(x) = cos(1/x) for x ∈ (0, 1) and let xn = 1
nπ

. We then have
f(xn) = cos(nπ) = (−1)n, so f(xn) is not a Cauchy sequence.

3) a) By the fundamental theorem of calculus we can write

f(x) = f(x0) +

∫ x

x0

f ′(s)ds

for x, x0 ∈ (0, 1). Since f ′ is uniformly continuous on (0, 1), it extends
continuously to the endpoints, and we can define f ′(0) and f ′(1) so
that f ′ is continuous on [0, 1]. In particular f ′ is Riemann integrable
on [0, 1], so we can let x0 → 0 to obtain

f(x) = f(0) +

∫ x

0

f ′(s)ds
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for x ∈ [0, 1]. We now let f ′+ = max{f ′, 0} and f ′− = max{−f ′, 0}, and
we have f ′ = f ′− − f ′−. Both f ′+ and f ′− are Riemann integrable since
they are continuous in [0, 1]. Therefore we have f = g − h on [0, 1]
where

g(x) = f(0) +

∫ x

0

f ′+(s)ds, h(x) =

∫ x

0

f ′−(s)ds,

and both g and h are continuous increasing functions.

b) Let xn = 1
π/2+nπ

, and observe that |f(xn)− f(xn−1| = xn + xn−1

since sin(1/xn) = 1 for n even and sin(1/xn) = −1 for n odd. Note
that this series is divergent. Now if it were true that f = g − h where
g and h are continuous increasing functions on [0, 1], then we would
have |f(xn)− f(xn−1)| ≤ |g(xn)− g(xn−1)|+ |h(xn)− h(xn−1)|, and as
observed in the hint, the series would be convergent. This contradiction
shows that f cannot be so represented.

4) a) We show that fn → f uniformly. To see this, let gn = f − fn

and observe that gn is a decreasing sequence of continuous functions
converging pointwise to 0. We show that gn converges uniformly to 0.
Let ε > 0, and observe that for all x ∈ [0, 1] there exists nx such that
gnx(x) < ε/2. Since gnx is continuous at x, there exists δx > 0 so that
gnx(y) < ε for |y − x| < δx. By compactness, choose x1, . . . , xK ∈ [0, 1]
so that [0, 1] ⊆ ∪K

n=1(xn−δxn , xn+δxn). Let N = max{n(1), . . . , n(K)}
where n(k) = nxk

, and observe that for any x ∈ [0, 1] we have |x −
xk| < δxk

for some k. Therefore gn(k)(x) < ε. Since n(k) ≤ N and
the sequence gn is decreasing, it follows that gN(x) < ε and therefore
gn(x) < ε for n ≥ N and for all x ∈ [0, 1]. Therefore gn converges
uniformly to 0, so fn converges uniformly to f . By our theorem on
interchange of limits with integrals we can now conclude that

∫ 1

0
f =

lim
∫ 1

0
fn.

b) Enumerate the rational numbers in [0, 1] as a sequence rn, and for
ε > 0 choose open intervals In centered at rn of length ε2−n. Let gn be
the piecewise linear function which is 0 outside In, positive inside In,
and equal to 1 at rn. We then let fn = max{g1, . . . , gn}, and we see that
fn is an increasing sequence of continuous functions with 0 ≤ fn ≤ 1.
Let f be the pointwise limit of fn, and we claim that f is not Riemann
integrable. To see this, let K = [0, 1] \ ∪∞n=1In, and observe that for
any x ∈ K, the function f is not continuous at x since f(x) = 0 and
any open interval about x contains points rn at which the value of f is
1.

We claim now that K does not have measure zero and therefore f
is not Riemann integrable by Lebesgue’s theorem. To see this observe
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that if K is covered by a collection of open intervals Jk, then the Jk

together with the In form an open covering of [0, 1] which then has a
finite subcovering. Now the total length of the intervals in the finite
subcovering is at least 1 since the intervals cover [0, 1], but the total
length of the In is ε. It follows that the total length of the Jk is at least
1− ε, and thus K does not have measure zero if ε < 1.

5) a) By the fundamental theorem of calculus we can write

fn(x) = fn(1/2) +

∫ x

1/2

f ′n(s)ds.

For any given x ∈ (0, 1) it follows from the uniform convergence of the
sequence f ′n and the convergence of the sequence fn(1/2) that fn(x)
converges to a limit f(x), and

f(x) = f(1/2) +

∫ x

1/2

g(s)ds.

From this it follows again by the fundamental theorem of calculus that
f is differentiable on (0, 1) and f ′ = g.

b) Let fn = (−1)n[π/2 − tan−1(nx)], and observe that for each
x ∈ (1, 2) the series converges since the terms alternate in sign and
are decreasing to zero in absolute value. Therefore the series con-
verges pointwise in (1, 2). Now we have f ′n(x) = (−1)n+1 n

1+n2x2 , and
this series also converges for the same reason. From the theory of
alternating series we also know that the sum of the series g(x) sat-
isfies |g(x) − gn(x)| ≤ |f ′n+1(x)| where gn denotes the partial sum
gn(x) =

∑n
k=1 f ′n(x). Since the |f ′n(x)| < 1/n for all x ∈ (1, 2) it

follows that the series of derivatives converges uniformly to a function
g on (1, 2), and therefore it follows that the series can be differentiated
term by term.

6) a) Let ε > 0 be given. Since An has measure zero, there is a countable
collection In of open intervals so that An ⊆ ∪I∈InI and

∑
I∈In

|I| <
ε2−n. Let I = ∪∞n=1In. Since a countable union of countable sets is
countable we see that I is a countable collection of open intervals. We
have

∑
I∈I |I| =

∑∞
n=1

∑
I∈In

|I| <
∑∞

n=1 ε2−n = ε. Moreover we have
∪∞n=1An ⊆ ∪I∈II, so it follows that ∪∞n=1An has measure zero.

b) Assume that |f(x) − f(y)| ≤ K|x − y|, and observe that if I is
any finite open interval, then f(I) is an interval of length at most K|I|,
and therefore it is contained in an open interval JI of length 2K|I|. Let
ε > 0 and let I be a collection of open intervals which cover A and
with

∑
I∈I |I| <

ε
2K

. For each I ∈ I, let JI be an open interval which
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contains f(I) with |JI | = 2K|I|. We then have f(A) ⊆ ∪J∈IJI , and∑
I∈I |JI | = 2K

∑
I∈I |I| < ε. Therefore f(A) has measure zero.

c) Since Cn is a union of 2n intervals of length 3−n, for any λ > 1
we can cover Cn by 2n open intervals of length at most λn3−n. This
collection of open intervals then covers C ⊆ Cn, and the total length
of the intervals is at most (2λ/3)n. If λ is chosen smaller than 3/2 we
will have (2λ/3)n < ε for n sufficiently large. Therefore C has measure
zero.

7) a) Let x(t) be the solution of the initial value problem with x(0) = x0

and assume that x(t) is defined on [0, T ). Since f ≥ 0 we see that x(t)
is an increasing function of t so we have the lower bound x0 ≤ x(t) for
all t ∈ [0, T ). If x(t) ≤ 1 for all t ∈ [0, T ) then we have the desired
bound. Assume that there exists t0 ∈ [0, T ) so that x(t0) = 1 and
thus x(t) ≥ 1 for t ∈ [t0, T ). Since x′(t) = f(t, x(t)) ≤ Cx(t) for
t ∈ [t0, T ), we have (log x)′ ≤ C and therefore integrating over [t0, t] we
find log x(t) ≤ C(t− t0) for t ∈ [t0, T ). Therefore x(t) ≤ eC(t−t0) ≤ eCT

for all t ∈ [t0, T ). We have shown x0 ≤ x(t) ≤ eCT for all t ∈ [0, T ).
We now let S be the subset of [0,∞) consisting of those T such

that the initial value problem has a unique solution on [0, T ) which
extends continuously to [0, T ]. By the local existence and uniqueness
theorem we see that [0, δ) ⊆ S so S is not empty. We show that S
is both open and closed, and therefore by connectedness of [0,∞) we
must have S = [0,∞). First note that S is open by the Extension
Principle. To see that S is closed, suppose that Tn ∈ S and Tn → T .
If any Tn ≥ T , then T ∈ S, so we may assume that Tn < T for all n.
It then follows that the initial value problem has a solution on [0, T ).
This solution is unique by the global uniqueness theorem. Since the
solution x(t) is increasing and bounded above (by the estimate in the
previous paragraph), it follows x(t) extends continuously to [0, T ], and
therefore T ∈ S. This shows that S is closed, and therefore there exists
a solution of the initial value problem defined on [0,∞). The solution
is unique by the global uniqueness theorem.

b) From the estimate of part a we see that the collection S is uni-
formly bounded. Since x′ = f(t, x(t)) for each function x(t) in S it
follows that |x′(t)| is uniformly bounded for t ∈ [0, 1] and therefore x(t)
is Lipschitz with a fixed Lipschitz constant. Therefore S is equicontin-
uous. By the Arzela-Ascoli theorem we see that S has compact closure,
so it remains to show that S is a closed subset of C([0, 1]). To see this,
let xn(t) be a convergent sequence from S and let x(t) be its limit. We
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then have by the fundamental theorem of calculus

xn(t) = xn(0) +

∫ t

0

f(s, xn(s))ds.

Since xn converges uniformly to x, we have

|f(s, xn(s))− f(s, x(s)| ≤ K|xn(s)− x(s)|
where K depends only on the bound on the functions in S. It follows
that the sequence f(s, xn(s)) converges uniformly to f(s, x(s)) and so
we can take the limit and get

x(t) = x(0) +

∫ t

0

f(s, x(s))ds.

Therefore we have x′(t) = f(t, x(t)) and x(0) ∈ [−B, B]. Thus x ∈ S
and therefore S is closed.


