Math 171, Autumn 2007
Fall 2007 Final Exam Solutions

1) a) Assume that A is open. This implies that M \ A is closed and
therefore ANM\ A=AN(M\ A) =0. Since 9A C M \ A it follows
that AN9JA = 0. B

Assume that ANOA = (). Since A C A, it follows that ANM \ A = (),
and thus M \ A= M \ Aso M\ A is closed and A is open.

b) Assume that x € OA. Since x € A, there is a sequence from A
converging to z. Since z € M \ A there is a sequence from M \ A
converging to x.

Assume that there is a sequence from A converging to x and there
is a sequence from M \ A converging to x. Then it follows that z € A
and x € M \ A soz € 0A.

2) a) If € > 0 is chosen, then by uniform continuity there exists 6 >
0 such that p(f(z), f(2)) < € whenever z,2 € A with d(z,2) < §.
Because A is totally bounded we can find points zq,...,xxy € A so
that A C UY_, D(z,,d). We now show that f(A) C UN_ D(f(x,),e€).
To see this, let y € f(A), then there exists x € A such that f(z) =
y. It follows that = € D(z,,d) and thus d(z,z,) < 0. Therefore
p(f(z), f(x,)) < € and thus y = f(x) € D(f(z,),€). Thus we have
shown that f(A) C UN_ D(f(z,),€) as required.

b) Let x, be a Cauchy sequence from M. Given € > 0, there exists
d > 0 so that p(f(z), f(Z)) < € for x,Z € M with d(z,Z) < §. Since
x, is Cauchy there exists N so that d(x,,x,,) < d for n,m > N. It
follows that p(f(x,), f(zm)) < € for n,m > N. Therefore the sequence
f(z,) is Cauchy in N.

Let f(z) = cos(1/z) for = € (0,1) and let z, = -=. We then have
f(z,) = cos(nm) = (—1)", so f(x,) is not a Cauchy sequence.

3) a) By the fundamental theorem of calculus we can write

o) = fao)+ [ Cf(s)ds

for x,z9 € (0,1). Since f’ is uniformly continuous on (0, 1), it extends
continuously to the endpoints, and we can define f’(0) and f/(1) so
that f’ is continuous on [0,1]. In particular f’ is Riemann integrable
on [0, 1], so we can let zp — 0 to obtain

f(x) = £(0) + / " f(s)ds
1
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for x € [0,1]. We now let f| = max{f’,0} and f_ = max{—f’,0}, and
we have f' = f/ — f. Both f! and f’ are Riemann integrable since
they are continuous in [0,1]. Therefore we have f = g — h on [0, 1]
where

o) = F(0) + / " f(s)ds, hiz) = / "1 (s)ds,

and both g and h are continuous increasing functions.

b) Let x,, = m, and observe that |f(z,) — f(zn_1| = zp + Ty
since sin(1/x,) = 1 for n even and sin(1/x,) = —1 for n odd. Note
that this series is divergent. Now if it were true that f = g — h where
g and h are continuous increasing functions on [0, 1], then we would
have |f(zn) = f(zn-1)| < |g(2n) — g(zn1)| + |h(zn) = h(zn-1)], and as
observed in the hint, the series would be convergent. This contradiction
shows that f cannot be so represented.

4) a) We show that f, — f uniformly. To see this, let g, = f — fn
and observe that g, is a decreasing sequence of continuous functions
converging pointwise to 0. We show that g, converges uniformly to 0.
Let € > 0, and observe that for all € [0, 1] there exists n, such that
Gn, (T) < €/2. Since gy, is continuous at z, there exists 6, > 0 so that
Gn, (y) < € for |y — x| < J,. By compactness, choose x1,...,zx € [0,1]
so that [0,1] C UE_, (2, — 0, , 7+ 0., ). Let N = max{n(1),...,n(K)}
where n(k) = ng,, and observe that for any = € [0, 1] we have |z —
Ty < 0y, for some k. Therefore g,u)(x) < e. Since n(k) < N and
the sequence g, is decreasing, it follows that gy(z) < € and therefore
gn(z) < € for n > N and for all z € [0,1]. Therefore g, converges
uniformly to 0, so f, converges uniformly to f. By our theorem on
interchange of limits with integrals we can now conclude that fol f=
lim [ f,.

b) Enumerate the rational numbers in [0, 1] as a sequence r,,, and for
€ > 0 choose open intervals I,, centered at r,, of length e27". Let g, be
the piecewise linear function which is 0 outside I, positive inside I,,,
and equal to 1 at r,,. We then let f,, = max{g, ..., 9.}, and we see that
fn is an increasing sequence of continuous functions with 0 < f,, < 1.
Let f be the pointwise limit of f,,, and we claim that f is not Riemann
integrable. To see this, let K = [0,1] \ U, 1,, and observe that for
any x € K, the function f is not continuous at = since f(x) = 0 and
any open interval about = contains points r, at which the value of f is
1.

We claim now that K does not have measure zero and therefore f
is not Riemann integrable by Lebesgue’s theorem. To see this observe



3

that if K is covered by a collection of open intervals Jj, then the J;
together with the [, form an open covering of [0, 1] which then has a
finite subcovering. Now the total length of the intervals in the finite
subcovering is at least 1 since the intervals cover [0, 1], but the total
length of the I, is €. It follows that the total length of the Jj is at least
1 — ¢, and thus K does not have measure zero if € < 1.

5) a) By the fundamental theorem of calculus we can write
falz) = fu(1/2) + / fr(s)ds.
1/2

For any given z € (0, 1) it follows from the uniform convergence of the
sequence f/ and the convergence of the sequence f,(1/2) that f,(z)
converges to a limit f(z), and

T

f@) = £(1/2) + / o(s)ds.

1/2
From this it follows again by the fundamental theorem of calculus that
f is differentiable on (0,1) and f’ = g.

b) Let f, = (=1)"[r/2 — tan"!(nx)], and observe that for each
x € (1,2) the series converges since the terms alternate in sign and
are decreasing to zero in absolute value. Therefore the series con-
verges pointwise in (1,2). Now we have f)(z) = (—=1)"*' i, and
this series also converges for the same reason. From the theory of
alternating series we also know that the sum of the series g(x) sat-
isfies |g(z) — gn(z)] < |f,1(x)| where g, denotes the partial sum
gn(x) = D7, fr(z). Since the |f/(z)| < 1/n for all x € (1,2) it
follows that the series of derivatives converges uniformly to a function
g on (1,2), and therefore it follows that the series can be differentiated
term by term.

6) a) Let € > 0 be given. Since A,, has measure zero, there is a countable

collection Z,, of open intervals so that A, C Ujez, [ and )7 |I] <

€e2™". Let 7 = U;2,Z,. Since a countable union of countable sets is

countable we see that 7 is a countable collection of open intervals. We

have Y7 o7 [ = 32021 > rer, II < D002, €27 = €. Moreover we have
> 1A, C Ujezl, so it follows that US| A, has measure zero.

b) Assume that |f(z) — f(y)| < K|z — y|, and observe that if I is
any finite open interval, then f(I) is an interval of length at most K|,
and therefore it is contained in an open interval J; of length 2K |I|. Let
e > 0 and let Z be a collection of open intervals which cover A and
with Y ;.7 |I] < 5%. For each I € Z, let J; be an open interval which
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contains f(I) with |J;| = 2K|I|. We then have f(A) C UjezJr, and
Y rer|Jil =2K Y, 7 |I| < €. Therefore f(A) has measure zero.

¢) Since C), is a union of 2" intervals of length 37", for any A > 1
we can cover C,, by 2" open intervals of length at most A\"37". This
collection of open intervals then covers C' C (,, and the total length
of the intervals is at most (2A/3)". If A is chosen smaller than 3/2 we
will have (2)A/3)" < € for n sufficiently large. Therefore C' has measure
Zero.

7) a) Let 2(t) be the solution of the initial value problem with z(0) = x
and assume that z(t) is defined on [0,7). Since f > 0 we see that z(t)
is an increasing function of ¢ so we have the lower bound xy < z(t) for
all t € [0, 7). If z(t) < 1 for all t € [0,T) then we have the desired
bound. Assume that there exists ¢y € [0,7) so that z(ty) = 1 and
thus x(t) > 1 for t € [ty,T). Since 2/(t) = f(t,z(t)) < Cx(t) for
t € [to,T), we have (logx)" < C and therefore integrating over [to, t] we
find log z(t) < O(t —ty) for t € [ty, T'). Therefore x(t) < eC(t=t0) < CT
for all ¢ € [to, T). We have shown zy < x(t) < T for all t € [0, 7).

We now let S be the subset of [0,00) consisting of those T' such
that the initial value problem has a unique solution on [0,7) which
extends continuously to [0,T]. By the local existence and uniqueness
theorem we see that [0,0) € S so S is not empty. We show that S
is both open and closed, and therefore by connectedness of [0, 00) we
must have S = [0,00). First note that S is open by the Extension
Principle. To see that S is closed, suppose that T,, € S and T,, — T.
If any T, > T, then T" € S, so we may assume that T,, < T for all n.
It then follows that the initial value problem has a solution on [0, T).
This solution is unique by the global uniqueness theorem. Since the
solution x(t) is increasing and bounded above (by the estimate in the
previous paragraph), it follows z(¢) extends continuously to [0, 7], and
therefore T' € S. This shows that S is closed, and therefore there exists
a solution of the initial value problem defined on [0, 00). The solution
is unique by the global uniqueness theorem.

b) From the estimate of part a we see that the collection S is uni-
formly bounded. Since ' = f(¢t,x(t)) for each function z(¢) in S it
follows that |2/(t)| is uniformly bounded for ¢ € [0, 1] and therefore x(t)
is Lipschitz with a fixed Lipschitz constant. Therefore S is equicontin-
uous. By the Arzela-Ascoli theorem we see that S has compact closure,
so it remains to show that S is a closed subset of C([0,1]). To see this,
let x,(t) be a convergent sequence from S and let x(t) be its limit. We



then have by the fundamental theorem of calculus

t
zn(t) = 2,(0) +/ f(s,xn(s))ds.
0
Since x,, converges uniformly to =, we have

£ (s,2n(s)) = f(s,2(s)] < Klan(s) — z(s)]
where K depends only on the bound on the functions in S. It follows
that the sequence f(s,z,(s)) converges uniformly to f(s,z(s)) and so

we can take the limit and get
t

z(t) = z(0) + (s,x(s))ds.

0
Therefore we have 2/(t) = f(¢,z(t)) and 2(0) € [-B,B]. Thus z € S
and therefore S is closed.



