Today: remarks on stable maps

- Floer's equation vs S^1-hol strips
- Floer's thm: $\text{HF}^+(L_0, L) \cong H^*(L_0)$
- Oh spectral sequence

Stable maps: A S^1-hol map $u: \Sigma_\infty \to X$ is called a pseudo stable map; it is stable if its automorphism group is finite, where a

automorphism is $\Sigma_\infty \xrightarrow{f} \Sigma_\infty$ where f is the underlying automorphism

$\Sigma_\infty \xrightarrow{\phi}$ of trees + birational on components, preserve marked points.

Remark: if $u: \Sigma_\infty \to X$ is constant, then stability of u implies stability of the domain Σ_∞ (equipped with marked points). If u is constant, then Σ_∞ is stable \Rightarrow Σ_∞ is stable.

Example: $u: L_\infty \to X$ non-constant is stable, because any automorphism $\phi: (\mathbb{R} \times \mathbb{R}, 0, 0)$ is translation, and $u \circ \phi = u$.

Remark: in Gromov's compactness, bubbles are only well defined up to overall automorphism \Rightarrow get an element of HF^+ of domains.

"At of domains" has a nearly free action when the maps are stable.

Floer's equation:

It is helpful to have a more flexible way of constructing Floer homology groups, using an auxiliary Hamiltonian.

Define, for $H: L_0, L \to \mathbb{R}$ Hamiltonian, Jacobi \mathbb{R} and L_0 and L_1, $\text{CF}^+(L_0, L_1, H)$, defined whenever $\partial^+_H(L_0) \cap L_1$.

Let $X^{H^+}_{L_0, L_1} = \{\text{time-1 chords of } X_H \text{ from } L_0 \text{ to } L_1\}$

$g: L_0, L_1 \to X$, $g(0) \in L_0$ for $c \in \mathbb{R}$, $g = X_H$.

Define $CF^*(L_0, L_1; H, \mathbf{J}) = \prod_{n=1}^{\infty} X_{L_0, L_1}^n$.

Differential: for $x^+ \in X_{L_0, L_1}^n$, $\beta \in \pi_2(x^+, x^-, \ldots)$,

$$
\begin{aligned}
\mathcal{M}(x^+, \tilde{x}, \beta) &= \left\{ u : (S^1, 0, 1) \to X \mid
\begin{array}{l}
\mu : (S^1, 0, 1) \to (S^1, 0, 1) \\
u(0, 1) \in L \\
\partial_s u + J(d \mu - X_\mu) = 0
\end{array}
\right\}
\end{aligned}
$$

Floer's equation

$$
E(u) = \int_S |\partial \mu - x|^2 + \int_S (x \cdot \omega - d(x^* \mu dt)) < \infty.
$$

Coordinate free Floer's equation: $\left(d\mu - X_{\mu} \otimes dt \right)_{\mathbf{J} + J} = 0$

where $f \in Hom(TS, \omega^* TX)$, have $f_{\mathbf{J} + J} = \frac{1}{2} \left(f + J f_{\mathbf{J}} \right)$.

There are manifolds of index $\text{ind}(\beta)$ for generic J; look at $\mathcal{M}(x^+, \tilde{x}, \beta)/\mathbb{R}$ when $\text{ind}(\beta) > 0$. Then Gromov compactify.

Define $d(x^+) = \sum_{\mathbf{J} \in \pi_2(x^+, x^-)} e_{\mathbf{J}} \# \left(\mathcal{M}(x^+, \tilde{x}, \beta)/\mathbb{R} \right)$, x^-: Gromov compactness and gluing imply $d^2 = 0$ (in absence of bad bubbles).

Note: given $\mu \in \mathcal{M}(x^+, \tilde{x})$, gauge transform $\tilde{\mu}(s, t) = \phi_{H_t}^N \mu(s, t)$.

Then, $\tilde{\mu}$ is a solution to $\tilde{\partial}_J \tilde{u} = 0$ with boundary on $\phi_{H_t}(L_0, L_1)$, asymptotic to $x^+(n)$, $x(n)$, where $J = (\phi_{H_t})^* J (\phi_{H_t})^{-1}$ depends on t (in general, we may have needed t-dependent J anyway for transversality).

$\Rightarrow \exists \mathbb{C}F^*(L_0, L_1; H, \mathbf{J}) \cong \mathbb{C} F^*(\phi_{H_t}(L_0, L_1), L_1; H, \mathbf{J})$ as chain complexes.

As an example of application, we look at continuation maps $\mathbb{C}F^*(L_0, L_1; H, \mathbf{J}) \cong \mathbb{C}F^*(L_0, L_1, H, \mathbf{J})$. If there are quasi-isomorphisms, then $HF^* (\phi_{H_t}(L_0, L_1), L_1) \cong HF^*(L_0, L_1)$.

Define $\tilde{\partial}_{\mathbf{J}} u = \left(d\mu - x_\mu \otimes dt \right)_{\mathbf{J}}$ for μ.

Count index of solutions to

\[x^+ \text{ bubble of } X, \quad \bar{\partial}^L \bar{H} = 0 \]

\[\bar{\partial}^L \bar{H} = 0 \]

Chain map (if no bad bubbling)

\[\Phi \] follows from Gromov compactness/gluing, applied to index 1 moduli space. Namely,

\[\Phi \text{ (index 1 moduli space) is} \]

\[\begin{pmatrix} H_1 & H_0 \end{pmatrix} \begin{pmatrix} H_0 \to R \end{pmatrix} = \begin{pmatrix} H_0 \to H_0 \end{pmatrix} \]

\[\Phi \text{ on } \Psi_{H_0, H_0} \circ \Psi_{H_0, H_1} \text{ counts } \]

\[\sum_{\text{ind}(\rho) = 0} T_{\rho} \quad \# \lambda H_{H_0, H_1}(x^+) \]

Remark such a map can have negative energy, namely

\[E(\mu) = \int \mu^* \omega - d(\mu^* \lambda dt) \]

now equals

\[\int \omega_{H_0, H_1} \lambda H_0, H_1 \lim \to 0 \text{ bounded, indep of } \mu \text{ so don't get powers too negative, (x)} \]

\[(d \text{ vert } \mu^* \lambda dt + d \text{ horiz } \mu^* \lambda dt = \partial \text{ H d s d t) } \]

In general, the continuation maps involve negative powers of \(T(\mu) \), invariance requires Novikov field, not ring.

\[\text{Co powers bounded below, ok by (x)} \]

\[\Psi_{H_0, H_0} \circ \Psi_{H_0, H_1} \text{ counts } \]

\[\Psi_{H_0, H_0} \circ \Psi_{H_0, H_1} \]

"Homology of homotopies" to show \(\Psi_{H_0, H_0} \circ \Psi_{H_0, H_1} = \text{id} = 8K + K \partial \),

let \(H_{H_0, H_1} \) denote the space of pairs \((\lambda \in C_{0,0}) \text{, in solution} \)

\(b \text{ to } x^+ \)

If \(\lambda < 1 \), then \(H_0 \to \]

If \(\lambda > 2 \), then \(H_0 \to \]

\(\lambda \text{ to } H_0 \to \]

\(R \text{, } \lambda \to \)

\(R \text{, } \lambda \to \)
A count of index 0 elements of $\mathcal{M}_{\lambda, H_0}$ will define a map $K: CF^*(L_0, L_0, H_0) \to CF^*(L_0, L_0, H_0)$. Gromov compactness and gluing imply (if no bad bubbling) that there are 4 types of phenomena that can happen on ∂ (index λ moduli space):

1. $\lambda \to +\infty$: $\quad H_0 \quad \lambda \to +\infty \quad H_0$

2. $\quad (\quad H_0 \quad \lambda \to +\infty \quad H_0 \quad)$

3. $\lambda \to -\infty$: $\quad H_0 \quad \lambda \to -\infty \quad H_0$

4. $\lambda \to 0$: $\quad x \quad H_0 \quad x^+$. But: index 0 solutions (not λR).

Claim: the index 0 elements of $\mathcal{M}(x^+, x^-)$ are exactly constant maps (\Rightarrow count gives Id).

So, mod signs, get $K \circ \partial H_0 - \partial H_0 \circ K + \text{Id} = \Phi_{H_0, H_0} \circ \Phi_{H_0, H_0} = 0$.

The reverse composition is identical computations, so we get that Φ_{H_0, H_0} is a homology iso.

Rem: Invariance \Rightarrow define $HF^*(L, L) = HF^*(L, L, H, J)$ for H with $\partial H(L) = L$. Invariance: for J is similar.

Ex: $X = T^*\mathbb{Q}$, $\omega_{can} = d\lambda_{can} = dp \wedge dq$, $L \leq X$ ω-section.

$L \leq X$ is exact, meaning $\lambda_{can}(L) = 0$ (in fact, $\lambda_{can}(L) = 0$).

In particular, Stokes \Rightarrow $\pi_2(T^*\mathbb{Q}) \cong \pi_2(T^*\mathbb{Q}, L) = 0$.

So, $HF^*(L, L)$ is well-defined, as long as Gromov compactness holds. (Gromov compactness requires all strips to be mapped to $C \subset T^*\mathbb{Q}$ compact, but in principle, strips could escape to ∞ in target.)
Claim: have an a priori C^0 estimate on floor curves
\[u: \mathbb{R} \times [0,1] \to (T^*Q, L). \]
It comes from "maximum principle", "monotonicity" (\(T^*Q\) is convex at \(\alpha\), Liouville,...)

Assuming the claim, we have \(\text{HF}^*(L, L) \)

Theorem (Floor): \(\text{HF}^*(L, L) \subseteq H^*(L) \)

(more generally true for any \(L \leq X\), provided \(\pi_2(X) = 0 = \pi_2(Y, L) \).

Proof: by invariance, compare \(\text{CF}^*(L, L; H, J)\) with \(\text{CF}^*(L; \text{CF}^*(f, g)\) for specific nice \(H, J\). Pick \(g \) near \(L \), \(f: L \to \mathbb{R}\) Morse function with \((f, g)\) "Morse-Smale".

Note: \(g\) on \(L = Q\) induces a splitting \(T^{*}Q \simeq T_{\text{vert}}^{*}Q \oplus T_{\text{vert}}^{*}Q\), and induces a \(\mathcal{I}\) on \(T^{*}Q\).

On \(T(T^{*}Q)|_Q \subseteq T^{*}Q \oplus Q\),
\(\mathcal{I}\) on \(q\) is the natural pairing \(\mathcal{I}\) induced by \(g\):
\[\mathcal{I}(\phi) = g(\phi, -) \]
\[T_Q^{*}Q \quad T_Q^{*}Q \]

Note: \(f: L \to \mathbb{R}\) induces a Hamiltonian \(H: T^*_Q \to \mathbb{R}\)
(maybe cutoff \(H\) near \(\infty\):)

Theorem (Floor). if \(f\) is \(C^2\) small, there is a bijection
\[\{ g: \mathbb{R} \to Q, \ g(s) = \nabla f, (s) \} \leftrightarrow \left\{ \text{Solutions to Floer's equation} \right\} \]
\[\{ \text{flowlines for } (f, g) \} \leftrightarrow \left\{ \text{Solutions to } H = \mathcal{I}(\phi, -) + \mathcal{I}(\phi, -) = 0 \right\} \]
with asymptotics \(x^3\)

Note: in coordinates, \(H(q, p) = f(q) \)
\[dH = f_q(q) dq \]
\[X_H = f'_q(q) dp \]
Note: \(X_4 = 0 \) at critical points of \(f: \mathcal{Q} \rightarrow \mathbb{R} \), so

\[
\{ \text{constant trajectories} \} = \text{crit}(f).
\]

Further: if \(y: \mathcal{R} \rightarrow \mathcal{Q} \) is st
\[
y(s) = \nabla f(y(s)), \quad u(s,t) = y(s)
\]
satisfies
\[
\frac{\partial u}{\partial s} + \int_0^t \left(\frac{\partial u}{\partial s} - x \right) = 0 \quad y(s) = 3x = -\Phi f
\]

In general, for \(\pi_2(x, \pi_2(x, L) \neq 0 \), there may be discs/sphere classes, and in particular new classes of strips, by "connect sums" of homotopy classes.

If \(d \) happens to be well-defined and \(a^2 = 0 \), one can look at the energy filtration of terms contributing to \(d \).

Because

(a) Near any \(L \times X \), \(\mathcal{N} \) Weinstein nbhd \(U \subset T^*L \) of \(L \)
(b) "low energy strips/discs" must stay inside \(U \) (monotonicity lemma),

the low energy part of \(d \) coincides (for nice \(H, J \)) with the Morse differential, by Floer's argument.

\[\Rightarrow \text{3 spectral sequence} \quad H^*(L) \Rightarrow HF^*(L, L) \quad [\text{Oh spectral sequence}] \]

More generally, if \(L_0, L_1 \) have clean intersection so that \(L_0 \cap L_1 : N \times X \), Pozniak constructed a spectral sequence (under hypotheses of definedness)

\[H^*(N) \Rightarrow HF^*(L_0, L_1), \quad \text{coming from a reduction to a local model in low energy}: \quad \mathcal{Q} \subset T^*\mathcal{Q} \text{ zero section} \]

\[L \subset \text{conormal to } N \]

\[\nu^*(N) = \{ (q, p) \mid q \in N, p \text{ annihilates } TN \} \]