Rem: normally, \(HW^*(\cdot, \cdot) \) and \(W(\cdot) \) are defined without reference to \(W: E \rightarrow C \) as follows, assuming that \(E \) is Liouville:

\[Z \text{ Liouville vector field (near } \infty) , \]

meaning \(d(i_z \omega) = \omega \).

\(Z \) gives a coordinate \(r \) on \(E \) (near \(\infty \)).

Define \(HW^*(K, L) = \lim_{\varepsilon \to 0} HF^* (K, L; H^r) \)

OR \(= HF^*(K, L; H^r, r) \)

where \(H^r \) is a Hamiltonian which is asymptotically \(T \) near \(\infty \), and \(H^r, r \) is asymptotically \(r^2 \).

Generation criteria for Fukaya categories [Abozad]

and for \(\mathbb{F}(E, W) \) categories [Abozad - Sanaa].

We seek criteria under which a given collection of lagrangians \(\{ L^j \}, j = 1, \ldots \) (split) generate the entire Fukaya category.

Decategorified analogy: if one wants to show that a given collection of vectors \(\{ v_j \}, j = 1, \ldots \) span a vector space \(V \), it suffices to show that in \(\text{End}(V) \) \(\mathbb{Z} = V^* \otimes V \), i.e.,

\[\text{id}_V = \sum a_j \, \phi^*_j \otimes v_j \]

Then, for any \(v \in V \), \(v = \text{id}_V(v) = \sum a_j (\phi_j^*(w) \otimes v) \).

§1. Hochschild invariants of \(A_\infty \)-categories

To a pair \((A, B)\) where \(A \) is an associative algebra and \(B \) a bimodule over \(A \), get \(\ast \) Hochschild homology: \(HH^\ast(A, B) = \text{Ext}_{A_\infty^B}(A, B) = H^\ast(A \otimes_{A_\infty^B} B) \)

\(\ast \) Hochschild cohomology: \(HH_\ast(A, B) = \text{Ext}_{A_\infty^B}(B, A) = H^\ast(Rhom_{A_\infty^B}(A, B)) \)

Shorthand: \(HH^\ast(A) = AH^\ast(A, A) \) and \(HH_\ast(A) = H^\ast(A, A) \).
Given an A_{oo} category C, we can directly define a chain complex whose cohomology computes HH^*, HH_*, by adopting the explicit complex in (*)& coming from bar resolutions.

Define $\bigoplus_{X_0 \cdots X_n \in C} \text{Hom}(X_0, X_n) \otimes \cdots \otimes \text{Hom}(X_{n-1}, X_0)$.

$CC^*(C, C) := \bigoplus_{X_0 \cdots X_n \in C} \text{Hom}(X_0, X_n) \otimes \cdots \otimes \text{Hom}(X_{n-1}, X_0)$

"Hochschild cocycles" because \otimes inside Hom;

we think of it as

The differential involves summing over ways to apply ψ's.

For instance,

$\delta_{CC^*}(X_0 \otimes \cdots \otimes X_n) := \sum (-1)^* x_0 \otimes \cdots \otimes x_j \cdot \cdots \otimes x_i \otimes \cdots \otimes x_n \cdot \psi \cdot \cdots \cdot \psi \cdot \cdots \cdot \psi$

(duckbill)

$\delta_{CC^*}(\psi) := \rho \circ \delta \circ \psi \circ \rho$, using our previous notation \wedge.

The cohomologies are denoted $HH^*_C(C)$ and $HH^*_C(C)$; graded if C is.

More generally, can take $HH^*_B(C, B)$, where B is an A_{oo}-module over C, i.e. a bilinear functor $B : C \otimes C \to C$.

$CC^*_C(C, B) := \bigoplus_{X_0 \cdots X_n} \text{Hom}(X_0, X_n) \otimes \cdots \otimes \text{Hom}(X_{n-1}, X_0) \otimes \cdots \otimes \text{Hom}(X_n, X_0)$.

$\S2.$ Open-closed and closed-open maps.

Fix a field k, $q \in k$.

Say X is a compact symplectic manifold (for instance a torus, but take any other setting where all structures are defined).

1. $F(X)$ Fukaya category (\mathbb{Z}-graded if $2c_1(X) = 0$; otherwise $\mathbb{Z}/2$ or $\mathbb{Z}/2k$-graded).

2. $QH^*(X)$ quantum cohomology; same grading as above. As a vector space, $QH^*(X) := H^*(X; k)$ (with grading collapsed).
\((-,-)_x : \mathbb{Q} \mathcal{H}^*(x)^{\otimes 2} \to k \quad (\alpha, \beta)_x = \int_x \alpha \bullet \beta \)
and w.r.t. \((-,-)_x, \alpha : (\mathbb{Q} \mathcal{H}^*(x))^{\otimes 2} \to \mathbb{Q} \mathcal{H}^*(x)\), equivalent to the
data of "3-point functions"
\((x, \beta, y)_x = (x \bullet \beta, y)_x\), counting \(\bigoplus \bigcup_{(x, y) \in \mathcal{X}} \text{PD}(x)\)
weighted by \(q^{\langle x, y \rangle}\).

[Seidel, \textit{CFO}, Aboveaid]: there are geometric maps
\(OE : \text{HH}_{x-n} (F(x)) \to \mathbb{Q} \mathcal{H}^*(x)\)
\(\&_O : \mathbb{Q} \mathcal{H}^*(x) \to \text{HH}^*(F(x))\).

Proposition: \(OE\) is a ring map
\(OE\) is a \(\mathbb{Q} \mathcal{H}^*(x)\)-module map, where the \(\mathbb{Q} \mathcal{H}^*\)
module structure on \(\text{HH}_x\) is induced by \(OE\) and the \(\text{HH}^*\)-module structure on
\(\text{HH}_x\) (non-commutative).

It is broadly expected that \((OE, \&_O)\) the "Hochschild calculus"
with standard operations on \(\mathbb{Q} \mathcal{H}^*(x)\).

How do define these maps, broadly?

* Given \(x_0 \circ x_1 \circ \ldots \circ x_n\), to define \(OE\), it suffices to specify:
\((OE(x_0 \circ x_1 \circ \ldots \circ x_n), \beta)_x = \bigoplus_{x_1, \ldots, x_n} \text{PD}(x)\)
weighted count by \(q^{\langle x, y \rangle}\).

* Given \(\beta \in \mathbb{Q} \mathcal{H}^*(x)\),
\(\&_O(\beta)(x_0, \ldots, x_n) = \sum_{x_0} \bigoplus_x \text{PD}(p)\).

We needed to choose cycles, but the result is independent of choices.

Proposition: these chain level \(OE\) and \(\&_O\) descend to cohomology; call the
cohomology level maps \(OE\) and \(\&_O\) too.

Proof: analyze cochain a breaking.
Rem. when \(X \) is monotone, both \(\mathcal{O}H^+(x) \) and \(F(x) \) decompose into summands indexed by \(\nu \) where \(\nu \) is an eigenvalue of \((c_\nu(x), x) \). \(\mathcal{O}H^+(x) \rightarrow \mathcal{O}H^+(x) \).

Call \(\mathcal{O}H^+(x)_\nu \), \(F_\nu(x) \) the corresponding summands.

Proposition: [Ritter-Smith; see also Sheridan] The maps \(\mathcal{O}F \) and \(\mathcal{O}F \) respect these decompositions.

Proposition: \(\mathcal{O}F \) and \(\mathcal{O}F \) are "linear dual" in the following sense. Have \((\cdot, \cdot)_x: \mathcal{O}H^+(x) \cong \mathcal{O}H^+(x)^v\), and \(F(x) \) (when \(X \) is compact, or rather when \(L \)'s are) is a "weak C-Y category" (some refinement of \(HF^+(K, L) \cong HF^+(L, K)^v \), which implies \(HH^+_x(F(x))^v \cong HH^+(F(x)) \)). We have:

\[
\begin{array}{ccc}
\mathcal{O}H^+ & \xrightarrow{\mathcal{O}F} & HH^+_x(F(x)) \\
\mathcal{O}H^+(x)^v \downarrow & & \downarrow CY^+ \\
& \mathcal{O}F^v & HH^+_x(F(x))^v
\end{array}
\]

§3: Abouzaid's Generation Criterion:

Theorem [Abouzaid] say \(\mathcal{A} \subset F(x) \), full subcategory, have:

\[\mathcal{O} \mathcal{A} \mathcal{A} : HH^+_{x,n}(\mathcal{A}, \mathcal{A}) \rightarrow HH^+_{x,n}(F, F) \rightarrow \mathcal{O}H^+(x) \]

If \(\mathcal{O} \mathcal{A} \mathcal{A} \) hits \(\mathcal{A} \subset \mathcal{O}H^+(x) \), then \(\mathcal{A} \) split-generates \(F(x) \).

(Originally for wrapped Fukaya categories, implemented for compact Fukaya categories by Abouzaid; FOOO, Ritter-Smith, Sheridan, Pantev-Sheridan.)

If \(\mathcal{A} \subset F_{\nu}(x) \) and \(\mathcal{O} \mathcal{A} \mathcal{A} \) hits \(\mathcal{P}_{\mathcal{O}H^+(x)_\nu}(x) \), then \(\mathcal{A} \) split-generates \(F_{\nu}(x) \).

"Works one summand at a time."
Sketch of proof: "annulus argument" (or Cartan condition)

Baby case: note that there is a map \(HF^*(L,L) \rightarrow HH^*_x(A) \) for any \(L \in \text{ob} A \) (\(\text{Hom}_A(L,L) \) subcomplex of \(CC_*(A) \)).

There is also a map \(HH^*_x(A,A) \rightarrow HF^*(k,k) \) for any \(k \in \text{ob} A \) (\(\text{Hom}_A(k,k) \) quotient complex of \(CC_*(A,A) \)).

Suppose \(\partial \in \text{ob} A \): \(HF^*(L,L) \rightarrow HH^*_x(A,A) \) hits 1.

\[\xymatrix{ L \ar^\partial @<1ex>[r] & X \ar^-Q @<1ex>[r] & QHF^*(x) \ar^-QH^*(x) } \]

For an arbitrary \(K \in F(x) \), have \(\xi_0^L: QH^*(x) \rightarrow HF^*(K,K) \).

Claim: the map \(n \mapsto 1 \) always

(exercise)

Claim: if \(L, K, \exists \) a comm. diagram

\[\xymatrix{ HF^*(L,L) \ar[d]^{\xi_0^L} \ar[r]^{\Delta} & HF^*(L,K) \otimes HF^*(K,L) \ar[d]^{[\mu]} \ar[r] & HF^*(K,K) \ar[d]^{\Delta^*} \ar[l]^{\xi_0^K} } \]

\(\Delta^* \) is "cooperad" a "new operation".

So, if \(\xi_0^L \) hits 1, then for any \(K \),

\[HF^*(L,K) \otimes HF^*(K,L) \xrightarrow{\mu} HF^*(K,K) \]

hits \(1_K \).

meaning that in \(H^F(x) \),

\[K \xrightarrow{\xi_0^L} L \xrightarrow{\xi_0^K} K \]

so

any \(K \) is a summand of \(L \).

Proof of 2nd claim: \[\xymatrix{ 0 \ar[r]^{\xi_0^L} \ar@{=}[d] & 0 \ar[r]^{\xi_0^K} \ar@{=}[d] & 0 \ar[r]^{\xi_0^K} \ar@{=}[d] & 0 \ar[r]^{\xi_0^K} \ar@{=}[d] & 0 \ar[r]^{\xi_0^K} } \]

\(\xi_0^L \), \(\xi_0^K \) count, because
\[O \varepsilon (x) = \sum_{\beta \in \text{CH}(x) \text{ basis}} O \varepsilon \beta_i (x) \cdot \beta_i \]

\[\varepsilon O (\beta_i) = \sum_{\beta \in \text{CH}(x) \text{ basis}} \ldots \]

\[O \varepsilon \cdot O \varepsilon (x) = \sum_{\beta \in \text{CH}(x) \text{ basis}} O \varepsilon \beta_i (x) \cdot O \varepsilon (\beta_i) \quad (\text{as } f \cdot f (\beta) = \sum \beta_i \cdot f (\beta_i)) \]

\[= \sum (O \varepsilon, O \varepsilon) \beta_i \cdot \beta_i \]

\[= (O \varepsilon, O \varepsilon)_A \quad \text{(Homologically)} \]

And \[\begin{array}{c}
\text{More general case: there's a commutative diagram (Above said)}:
\end{array} \]

\[\begin{array}{ccc}
\text{HH}_p (A, A) & \longrightarrow & H^p (Y^r \otimes_A Y^l) \\
\downarrow O \varepsilon & & \downarrow \varepsilon P \\
\text{QH}^*(X) & \xrightarrow{O \varepsilon} & \text{HP}^*(K, K) \\
\end{array} \]

where \[Y^r \otimes_A Y^l \] is a chain complex of the form

\[\bigoplus \text{hom}_A (X_k, K) \oplus \text{hom}_A (X_{k-1}, X_k) \oplus \ldots \oplus \text{hom}_A (X_0, X_1) \oplus \text{hom}_A (K, K_0) \]

This diagram implies that if \(O \varepsilon \) hits \(1 \), then \(\varepsilon P \) hits \(1 \) for any \(K \).

\((i): \lambda \in F (A) \)

\(\Rightarrow \text{hom} (K, \varepsilon P \otimes X) \overset{\lambda}{\longrightarrow} \text{hom} (K, K) \) hits \(1 \)

\(\Rightarrow A = 0 \) in \(H^*(\text{hom}_{\text{F/A}} (K, K)) \)

\(\Rightarrow K = 0 \) in \(F/A \)

\(\Rightarrow K \) is split-generated by \(A \).

[Theorem: If \(O \varepsilon \) hits \(1 \), then \(O \varepsilon \) and \(\varepsilon P \) are isomorphisms.]
There are many instances in which one can verify this generation criterion. By PD at $O^\mathbb{F}$ and O, it suffices to show $\overline{c_0} : \text{QH}^*(X) \to \text{HH}^*(A)$ is injective: it implies $O^\mathbb{F}$ is surjective, hence hits 1.

There are many cases in which a given $\text{QH}^*(X)$ is rank 1: $\leq \operatorname{rk}_x \left(\frac{\text{pr}^\mathbb{F}}{\text{pr}^x} \right)$

In this case, if $A \leq F^w(x)$, and A has any L with $\text{HF}^*(L,L) \neq 0$, A satisfies the generation criterion ("semi-simple case")

Indeed, $\overline{c_0} : \text{QH}^*(X) \to \text{HH}^*(A) \to \text{HF}^*(L,L)$

ex: \mathbb{P}^1, or more generally, \mathbb{P}^n (QH*(X) splits into rank 1 summands)

The Clifford torus with all its almost systems generate, for instance.

There are other cases in which one can deduce a "automatic generation":

Theorem [Ganatra] Say:

1. A is "homologically smooth" (some condition only depending on A

2. $\operatorname{rk} \text{HH}^0(A) \geq \operatorname{rk} \text{QH}^*(X)_x \operatorname{rk} \text{if} A \leq F(x)$

Then, A split-generates.

Can apply this to other cases, such as Fano varieties, Fano hypersurfaces in \mathbb{P}^n, using computations of $[\text{Ch}^n, \text{Ch}^n, A^\text{fano}]$ and [Smith; Shen].
Returning to LG models (E, W), there is a map
$$\text{HH}_*(F(E, W), B_{2w}) \rightarrow \text{HF}^*(E, W)$$

[Theorem (Abadeh-Santra)] if $O_E W/\mathbb{A}$ hits 1, it split-generates.

Expectation: $O_E W$ is always an isomorphism, at least when W
is a Lefschetz fibration (true with a critical point,...)