Math 535A Lecture 1

Monday, January 9, 2017

Review of topological spaces

Recall the following definition from point-set topology:

Definition 1. A topological space is a pair (X, \mathcal{T}) (often abbreviated X, with \mathcal{T} left implicit) where X is a set and \mathcal{T} is a family of subsets of X such that

- 1. The empty set \emptyset and X are both elements of \mathbb{T} ,
- 2. Any finite intersection of elements of T is in T, and
- 3. arbitrary unions of elements of \mathfrak{T} are again contained in \mathfrak{T} (to recall notation, we state this precisely as: "if $\{U_{\alpha}\}_{\alpha \in I}$ is a collection of subsets of X with $U_{\alpha} \in \mathfrak{T}$ for all $\alpha \in I$, then $\bigcup_{\alpha \in I} U_{\alpha} \in \mathfrak{T}$.")

The collection of subsets \mathcal{T} is called a *topology* on X, and the subsets $U \in T$ are called the *open* sets of X.

Example 1. Any set S has at least two topologies:

- The trivial topology $\mathcal{T} = \{\emptyset, S\}$; and
- The discrete topology $\mathcal{T} = \mathcal{P}(S) = \{ \text{all subsets of } S \}.$

In particular, because there is no set of all sets, there is no set of all topological spaces.

Example 2. Let X := (X, d) be a *metric space*, which we recall is a set X equipped with a function $d: X \times X \to [0, \infty)$ (called the *metric* or *distance function*), satisfying

- d(x, y) = 0 if and only if (iff) x = y; and
- d(x, y) = d(y, x) for all $x, y \in X$; and
- $d(x,z) \le d(x,y) + d(y,z)$ for all $x, y, z \in X$.

Given a point $x \in X$ and any real number $\epsilon > 0$, recall that the open ball of radius ϵ centered at x is

$$B_{\epsilon}(x) = \{ y \in X | d(x, y) < \epsilon \}.$$

From a metric space X := (X, d), we obtain a topology \mathcal{T} on X (called the *metric topology*) as follows: we say a set $U \subset X$ is open, e.g., in \mathcal{T} , if at any $x \in U$, there is a $B_{\epsilon}(x)$ contained in U for some ϵ . One might also call this the topology "generated" by the sets $B_{\epsilon}(x)$.

Recall that we use the notation $\mathbb{R}^n := \underbrace{\mathbb{R} \times \cdots \times \mathbb{R}}_{n \text{ copies}}$ for *n*-dimensional Euclidean space. \mathbb{R}^n can

be equipped with the structure of a metric space, using the (usual) Euclidean metric

$$d(x,y) = ||x-y|| = \sqrt{(x_1 - y_1)^2 + \dots + (x_n - y_n)^2};$$

in particular \mathbb{R}^n can be thought of as a topological space.

Recall some further definitions from point set topology:

- A topological space X is *Hausdorff* if for any two points $x, y \in X$, there exists a neighborhood¹ U of x and V of y with $U \cup V = \emptyset$ (so U and V "separate" x from y).
- A subset $A \subset X$ is *dense* if every non-empty open set in X contains an element of A.
- A topological space X is *separable* if it contains a countable dense subset. (For instance $\mathbb{Q}^n \subset \mathbb{R}^n$ is dense and countable, hence \mathbb{R}^n is separable).
- A topological space $X := (X, \mathfrak{T})$ is second countable if there is a countable subset $\mathfrak{T}_0 \subset \mathfrak{T}$ which generates the topology \mathfrak{T} , in the sense that elements of \mathfrak{T} are (potentially arbitrary) unions of elements of the countable collection \mathfrak{T}_0 . It is not hard to see that if X is a metric space which is separable, then X (thought of as a topological space) is second countable: let if $A \subset X$ denotes the countable dense set, take \mathfrak{T}_0 be the collection of balls of rational radius centered at the points of A.

Let's recall also some methods of constructing topological spaces

- 1. If X and Y are topological spaces, then the Cartesian product $X \times Y$ is again a topological space whose open sets are generated by products of open sets in X with that in Y.
- 2. Suppose $Y := (Y, \mathcal{T})$ is a topological space, X a set, and $i : X \hookrightarrow Y$ an injective map (for instance, X could be a subset of Y and i could just be the inclusion). Then, X carries an *induced* (or *subspace*; though that notation is usually reserved for when X is actually a subset) topology as follows: we say $U \subset X$ is open if and only if it's of the form $i^{-1}(U_Y)$ for U_Y an open subset of Y.² If X was a subset of Y, this is equivalent to: $U \subset X$ is open if and only if it's of the form $U_Y \cap X$, where $U_Y \subset Y$ is open.

Example 3. Let $X = S^1 = \{(x, y) | x^2 + y^2 = 1\} \subset \mathbb{R}^2$. Then, X inherits the structure of a topological space from the topology on \mathbb{R}^2 discussed above.

3. Suppose now $X := (X, \mathfrak{T})$ is a topological space, Y is a set, and $\rho : X \to Y$ a surjective map of sets. Then, Y inherits a topology, called the *quotient topology*, from X and ρ , as follows: we say $U \subset Y$ is open if and only if the preimage $\rho^{-1}(U)$ is open in X.

Example 4. The closed interval $[0,1] \subset \mathbb{R}$ is a topological space (equipped with the subspace topology from the inclusion $[0,1] \hookrightarrow \mathbb{R}$), and there is a surjective map $\rho : [0,1] \to S^1$ given by identifying 0 and 1 (concretely, one could realize this as the map $t \mapsto (\cos 2\pi t, \sin 2\pi t)$). The topological space [0,1] and the map ρ give S^1 the structure of a topological space.

Continuous functions and homeomorphisms

In Examples 3 and 4, we equipped S^1 with two different topologies; let us call the resulting topological spaces S_a^1 and S_b^1 . We'd like to compare them, and say they're the same, for instance. Along the way, it would be helpful to recall the general method by which we compare topological spaces: continuous maps.

¹For the purposes of our class, a *neighborhood* of a point p refers to an "open neighborhood" of the point p, i.e., an open set containing p.

²Recall the notation for *preimage* of a subset: if $g : A \to B$ is a map of sets, and $S \subset B$ a subset, then the preimage of S is $g^{-1}(S) := \{x \in A | g(x) \in S\}.$

Definition 2. A map $f: X \to Y$ between topological spaces³ is said to be continuous if, for every open subset $U \subset Y$, the preimage $f^{-1}(U)$ is open in X.

For a metric space, the above definition is equivalent to the more familiar definition expressible in terms of ϵ s and δ s.

Recall, that *inverse* of a map of sets $f : A \to B$, if it exists, is the unique map $g : B \to A$ satisfying $g \circ f = id_A$, $f \circ g = id_B$. In light of the two conditions which need to be satisfied, sometimes g is referred to as a two-sided inverse, and maps $g : B \to A$ which satisfy just one of the conditions $g \circ f = id_A$ or $f \circ g = id_B$ are called one-sided (or left or right respectively) inverses. A necessary and sufficient condition for an inverse to exist is for f to be *bijective*, e.g., injective and surjective. For a topological space, we

Definition 3. A continuous map between topological spaces $f : X \to Y$ is said to be a homeomorphism if it has an (two-sided) inverse $g : Y \to X$ which is also continuous. Equivalently, f is a continuous bijection with continuous inverse.

If $f: X \to Y$ is a homeomorphism, then $U \subset X$ is open if and only if $f(U) \subset Y$ is open. Therefore, we can use homeomorphisms to faithfully "translate" properties about the topology of X to that of Y and back. We might say "homeomorphisms" are the "isomorphisms" in the "category" of topological spaces (more on this point of view next time).

Example 5. Continuing the discussion in examples 3 and 4 and at the top of this section, it turns out that there is a homeomorphism $S_a^1 \cong S_b^1$, so we can think of the two constructions of the topology on S^1 as producing the "same" topological space.

 $^{^{3}}$ meaning, a map of the underlying sets