Math 51 Homework 3

Due Friday July 8, 2016 by 1 pm

Instructions: Complete the following problems. Late homework will not be accepted. Please be sure to review the expectations for your submitted homework outlined online (such as: always including your name and ID number on the homework, stapling your homework, and guidelines for write-ups which will receive full credit). Make sure to submit your homework to the correct person; (if you are in Section 01, submit to Zev, and if in Section 02, submit to Valentin).

Remark: The following problems may be helpful in preparing for the Midterm exam: the book problems in Section 4, 11, 12, 13.

Part I: Book problems: From Levandosky's *Linear Algebra*, do the following exercises:

- Section 4: # 10
- Section 11: # 4, 8, 15
- Section 12: # 3, 7, 13acd* (*Note: for each designated part of # 13, either explain briefly why the statement is "true", or give a counterexample if the statement is "false.")
- Section 13: # 2, 6, 8, 18, 22
- Section 14: # 2, 10, 12
- Section 15: # 1degh, 5, 6

Part II: Non-book problems:

1. Systems of coordinates. Suppose V is a subspace of \mathbb{R}^n and $\mathcal{B} = \{\mathbf{v}_1, \ldots, \mathbf{v}_k\}$ is a basis for V. Then by Propsition 11.1, given any vector $\mathbf{v} \in V$, there are unique scalars c_1, \ldots, c_k satisfying

$$\mathbf{v} = c_1 \mathbf{v}_1 + c_2 \mathbf{v}_2 + \dots + c_k \mathbf{v}_k.$$

These scalars c_1, \ldots, c_k are called the *coordinates of* **v** with respect to \mathcal{B} (see also Levandosky portion of your text, p. 145-147).

Turning to some specific examples, by Levandosky Examples 11.1 and 11.2, both

$$\mathcal{S} = \left\{ \mathbf{e}_1 = \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \mathbf{e}_2 = \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \mathbf{e}_3 = \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\} \text{ and } \mathcal{B} = \left\{ \mathbf{v}_1 = \begin{bmatrix} 1\\2\\4 \end{bmatrix}, \mathbf{v}_2 = \begin{bmatrix} 2\\1\\-1 \end{bmatrix}, \mathbf{v}_3 = \begin{bmatrix} 3\\4\\5 \end{bmatrix} \right\}$$

are bases for \mathbb{R}^3 .

- (a) Find the coordinates of $\mathbf{v} = \begin{bmatrix} 8\\ 5\\ -2 \end{bmatrix}$ with respect to \mathcal{S} . (b) Find the coordinates of $\mathbf{v} = \begin{bmatrix} 8\\ 5\\ -2 \end{bmatrix}$ with respect to \mathcal{B} . (c) Find the coordinates of $\mathbf{w} = \begin{bmatrix} 2\\ 1\\ -1 \end{bmatrix}$ with respect to \mathcal{B} . (*Hint*: can you avoid computation here?)

2. Suppose \mathbf{u}, \mathbf{v} , and \mathbf{w} are vectors in \mathbb{R}^n which are *mutually orthogonal*. By L4 Exercise 4.10 (which you solved earlier in this HW), the set $\mathcal{B} = {\mathbf{u}, \mathbf{v}, \mathbf{w}}$ is linearly independent. In the language of bases, that means \mathcal{B} is a basis for the subspace

$$V = \operatorname{span}(\mathbf{u}, \mathbf{v}, \mathbf{w}) \subset \mathbb{R}^n$$

Use dot products to find a formula for the coordinates of a vector $\mathbf{x} \in V$ with respect to \mathcal{B} ; that is, find expressions for the unique scalars c_1, c_2, c_3 satisfying

$$\mathbf{x} = c_1 \mathbf{u} + c_2 \mathbf{v} + c_3 \mathbf{w}$$

involving dot products of these vectors.

- 3. There are 7000 undergraduate students at Stanford. Let M be the 7000 \times 7000 matrix whose ij entry is 1 if student i and student j are Facebook friends and 0 if they are not. (Here we assume that Facebook does not permit a person to be a friend of themselves, so all the diagonal entries of M are zero.) What information does M^2 contain? That is, what is the meaning of the ij entry of M^2 ?
- 4. (a) Find two matrices A, B, with A of size 4 × 5 and B of size 5 × 4, where the product AB is a 4 × 4 matrix of rank equal to 4. (*Hint*: try to arrange for AB to be as simple as possible even the identity matrix I₄ and with many entries of A and B equal to zero).
 - (b) Find two matrices C, D with C of size 4×3 and D of size 3×4 , where the product CD is a 4×4 matrix of rank equal to 3.
 - (c) Is it possible to find two matrices E, F with E of size 4×3 and F of size 3×4 , where the product EF is a 4×4 matrix of rank equal to 4? If so, find an example; if not, explain why not.