
Math 215B Take-home Midterm Solutions
February 20, 2013

1. (10 points total) Wrong-way maps. We have seen that singular homology is a

functorial assignment, that is, given a map f : X → Y of topological spaces, there

is an induced map f∗ : Hi(X)→ Hi(Y ) on homology groups. In some cases, if the

map f : X → Y is particularly nice, there also exists a map f ! : Hi(Y )→ Hi(X),

called a wrong-way or transfer map.

a. (5 points) Let p : X̃ → X be a k-sheeted covering map, for some finite k.

Construct a (non-trivial!) map of chain complexes

Ci(X) −→ Ci(X̃) (1)

and show that it is a chain map, giving rise to an induced map on homology

p! : Hi(X) −→ Hi(X̃). (2)

b. (5 points). Show that the composition

p∗ ◦ p! : Hi(X)→ Hi(X) (3)

is multiplication by k.

Solution: 1a. Define the chain map φ : Cn(X)→ Cn(X̃) by taking each n-simplex

σ : ∆n → X

to the sum of its k lifts to X̃. There are always exactly k lifts, since 1.33 and 1.34 in

Hatcher tell us that each preimage of σ(x0) corresponds to a unique lift, and there

are k such preimages. Taking the ith face of each of these k lifts, we get k distinct

lifts of ∂iσ, which must be the k unique lifts of this (k − 1)-simplex. Therefore

taking the sum of lifts commutes with ∂i, so it commutes with ∂ =
∑

i(−1)i∂i as

well. Therefore φ a chain map, so it passes to a transfer map on homology

Hn(X)→ Hn(X̃)



1b. It suffices to show that p#◦φ is multiplication by k, before passing to homology

classes. Under this chain map, the simplex σ goes to the sum of its k lifts, each

of which is then mapped back to σ, so we get a sum of k copies of σ. So p# ◦ φ is

multiplication by k and we are done.



2. (14 points total) Applications to group theory.

a. (7 points) Let X be a wedge sum of n circles, with its natural graph structure,

and let X̃ → X be a covering space with Y ⊂ X̃ a finite connected graph.

Show there is a finite graph Z ⊃ Y having the same vertices as Y , such that

the projection Y → X extends to a covering space Z → X.

b. (7 points) Using the above fact if necessary, prove the following result in group

theory: Let F be a finitely generated free group, H ⊂ F a finitely generated

subgroup, and x ∈ F −H. Then there is a subgroup K of finite index such that

K ⊃ H and x /∈ K.

Solution: 2a. Label the n loops of X by a1, . . . , an. We will adopt the convention

that each lift of ai in X̃ or Z will also be labelled ai.

Suppose that Y has m vertices, and fix a value of i between 1 and n. There are

k edges labelled ai in Y , with 0 ≤ k ≤ m. Since Y is contained in a cover of X,

each vertex of Y has at most one edge labelled ai coming in or going out. There

are m vertices and k edges labelled ai, so exactly m− k of the vertices have no ai

coming in, and exactly m − k of the vertices have no ai going out. Therefore we

may pick a bijection

{vertices with no ai going out}
∼=−→ {vertices with no ai coming in}

and this bijection tells us how to attach m− k more edges to Y so that each each

vertex has exactly one edge labelled ai pointing in and one edge labelled ai pointing

out. Doing this separately for each value of i, we arrive at a graph Z containing Y

whose edges are labelled in a way that describes a covering map Z → X extending

Y → X. Note that Z will not in general be contained in X̃.

2b. We are given a finitely generated free group F , a finitely generated subgroup

H, and an element x ∈ F −H. Let X be a wedge of one circle for each generator

of F , so π1(X) ∼= F . Let (X̃, x̃0) → (X, x0) be a cover associated to H ⊂ F . For

each element of some finite set of generators for H, pick a finite edgepath γi that

begins and ends at x̃0. In addition, pick a finite edgepath α in X̃ that starts at

x̃0 and lifts the loop in X corresponding to x. Since x is not in the subgroup H,



α will not end at x̃0. Now let Y be the union of α and all the γi, and extend

Y to a covering space Z using the above problem. Let K ⊂ F be the subgroup

corresponding to the image of π1(Z, x̃0) in π1(X). Then K obviously contains H,

but it does not contain x because the path representing x in X lifts to α in Z,

which is not a closed loop. Finally, K has finite index because Z has finitely many

vertices, which are the preimages of the basepoint of X.



3. (12 points) Spaces not distinguished by homology. Show that S1×S1 and S1∨S1∨S2

have isomorphic homology groups in all dimensions, but their universal covering

spaces do not.

Solution: Using previous computations, the homology groups of S1 × S1 are

Z,Z2,Z. Using the formula for the reduced homology of a wedge, the homology

groups of S1 ∨ S1 ∨ S2 are also Z,Z2,Z. The universal cover of S1 × S1 is R2,

which is contractible, so it has the homology of a point. The universal cover of

S1 ∨S1 ∨S2 is obtained from the universal cover of S1 ∨S1 by attaching a copy of

S2 to every vertex. This is a 2-dimensional CW complex in which the 1-skeleton

is a tree. Contracting this tree to a point, we get a countable wedge of 2-spheres,

so its homology is a countable direct sum
⊕∞

i=1 Z in degree 2, and 0 in all other

positive degrees.



4. (10 points) Homological algebra. Let (Cn
∗ , ∂) be a collection of chain complexes

indexed by n ∈ Z, i.e., for each n ∈ Z, there is a chain complex

· · · → Cn
k

∂→ Cn
k−1

∂→ Cn
k−2 → · · · . (4)

Let fn
∗ : Cn

∗ → Cn+1 be a chain map, one for each n. Suppose that the composite

fn+1 ◦ fn : Cn → Cn+2 is chain-homotopic to zero for all n, by a chain homotopy

Kn : Cn
∗ → Cn+2

∗+1 ; that is,

fn+1 ◦ fn = ∂Kn +Kn∂ (5)

First part: Show that the map

ψn := fn+2 ◦Kn −Kn+1 ◦ fn (6)

is an anti-chain map from Cn
∗ → Cn+3

∗ , meaning that ∂ ◦ψn = −ψn◦∂, and deduce

that ψn gives rise to a map on homology,

ψn
∗ : Hi(C

n
∗ , ∂) −→ Hi+1(Cn+3

∗ , ∂) (7)

for all n and i. Second part: Finally, suppose that (7) is an isomorphism for all

n and i. Deduce that the sequence

· · · −→ Hi(C
n
∗ , ∂)

fn
∗−→ Hi(C

n+1
∗ , ∂)

fn+1
∗−→ Hi(C

n+2, ∂) −→ · · · (8)

is exact.

Solution of first part: First, let’s check that ψn is an anti-chain map. We

compute, using the chain homotopy equation fn+1 ◦fn = ∂Kn +Kn∂ and the fact

that fn is a chain map, so ∂fn = fn∂:

∂ψn = ∂fn+2 ◦Kn − ∂Kn+1 ◦ fn (9)

= fn+2 ◦ ∂ ◦Kn − (−Kn+1 ◦ ∂ + fn+2 ◦ fn+1) ◦ fn (10)

= fn+2 ◦ (−Kn ◦ ∂ + fn+1 ◦ fn)−Kn+1 ◦ ∂ ◦ fn + fn+2 ◦ fn+1 ◦ fn (11)

= −fn+2 ◦Kn ◦ ∂ +Kn+1 ◦ ∂ ◦ fn (12)

= −(fn+2Kn −Kn+1fn) ◦ ∂ (13)

= −ψn ◦ ∂. (14)



Let us show an anti-chain map ψ gives rise to a well-defined map on homology

ψ∗ : Hi(C
n
∗ ) −→ Hi+1(Cn+3

∗ )

[α] 7−→ [ψα]
(15)

First, we must check it sends cycles to cycles. If α is a cycle, then ∂ψα = −ψ∂α = 0

as desired. To check well-definedness, suppose α+ ∂β is another representative of

[α]. Then, ψ(α + ∂β) = ψα− ∂ψβ is homologous to ψα.

Solution of second part: Before proceeding, let us verify a key identity involving

ψn
∗ .

Claim: On homology, we have

ψn
∗ f

n−1
∗ = fn+2

∗ ψn−1
∗ . (16)

Proof of Claim. We compute, for a cycle β ∈ Cn−1
∗ (so ∂β = 0):

ψnfn−1β = (fn+2Kn −Kn+1fn)fn−1β (17)

= fn+2Knfn−1β −Kn+1fnfn−1β (18)

= fn+2Knfn−1β −Kn+1(∂Kn−1 +Kn−1∂)β (19)

= fn+2Knfn−1β −Kn+1∂Kn−1β (20)

= fn+2Knfn−1β − (fn+2fn+1 − ∂Kn+1)Kn−1β (21)

= fn+2(Knfn−1 − fn+1Kn−1)β + ∂Kn+1Kn−1β (22)

= fn+2ψn−1β + (a boundary), (23)

verifying the claim.

Now, suppose that ψn is an isomorphism. We need to verify the sequence (8) is

exact, i.e. ker fn+1
∗ = im fn

∗ . There are two assertions to check:

• im fn
∗ ⊂ ker fn+1

∗ : this follows immediately from the chain homotopy (5).

Indeed, for a cycle β ∈ imfn
∗ , so β is homologous to fnα, for some cycle α,

we have that

fn+1β = fn+1fnα + fn+1(a boundary)

= (∂Kn +Kn∂)α + fn+1(a boundary)

= (a boundary),

(24)



as ∂α = 0, verifying that on homology fn+1
∗ [β] = 0, so β ∈ ker fn+1

∗ .

• ker fn+1
∗ ⊂ im fn

∗ : Suppose we have a cycle β ∈ Cn+1
∗ with [β] ∈ ker fn+1

∗ , so

fn+1β = ∂α. By the isomorphism (7), β is homologous to ψn−2τ , for some

cycle τ ∈ Cn−2
∗ .

Now, using the key identity, note that

fn+1β ∼ fn+1ψnτ = ψn−1fn−2τ + ( a boundary). (25)

So, if fn+1β is a boundary, then ψn−1fn−2τ is a boundary, which by the

isomorphism (7), implies that fn−2τ is a boundary, i.e.

fn−2τ = ∂γ. (26)

Then, note that

β ∼ ψn−2τ (27)

= (fnKn−2 −Kn−1fn−2)τ (28)

= fnKn−2τ −Kn−1∂γ (29)

= fnKn−2τ − (fnfn−1γ − ∂Kn−1γ) = fn(Kn−2τ − fn−1γ)− ∂(Kn−1γ).

(30)

If we can show that η := (Kn−2τ−fn−1γ) is closed, then the above calculation

will imply that fn
∗ [η] = [β] as desired. We check:

∂η = ∂(Kn−2τ − fn−1γ) (31)

= (fn−1fn−2τ − fn−1∂γ) (32)

= (fn−1fn−2τ − fn−1fn−2τ) (33)

= 0. (34)



5. (14 points total) SO(3) and the quaternions. The topological group SO(3) is

defined as the space of real 3 x 3 matrices A with that are orthogonal (meaning

AT = A−1) and have determinant 1. The topology on SO(3) is the subspace

topology, coming from the inclusion of SO(3) ⊂ R9, the space of all 3 x 3 matrices.

Let H denote the group of quaternions (recall that these are numbers of the form

a+ b · i + c · j + d · k, for a, b, c, d ∈ R, with non-commutative multiplication rules

determined by i2 = j2 = k2 = −1, ij = −ji = k).

a. (6 points) A quaternion is called pure if it has 0 real part, i.e., it is of the form

b · i + c · j + d ·k. Thinking of R3 as the subspace of pure quaternions in H, any

quaternion q ∈ H induces a map

Aq : R3 −→ R3

x 7−→ qxq−1.
(35)

Show that when restricted to the unit quaternions (those with norm 1 using the

usual Euclidean norm in R4), such a correspondence gives a (continuous) map

φ : S3 → SO(3). (36)

b. (8 points) Prove that the map φ is a covering map, and use it to calculate

π1(SO(3)).

Solutions: 5a. We use the following facts: the quaternions have a multiplicative

norm, defined for

q = a+ bi+ cj + dk

as

‖q‖ =
√
a2 + b2 + c2 + d2

Also, the inverse of q is given by

a− bi− cj − dk
‖q‖2

Since inversion of unit quaternions and multiplication of quaternions are both given

by polynomials in each coordinate, they define continuous maps, so the given map

A− : S3 →M3×3(R)



is continuous. Since multiplication of quaternions preserves norms, the assignment

x 7→ qxq−1

preserves the norm of x as a vector in R3, so it defines an element ofO(3). Therefore

Aq gives a continuous map

S3 → O(3)

Since S3 is connected, this map must land in the path component of the identity,

which is SO(3).

5b. The map defined above

φ : S3 → SO(3)

is clearly a homomorphism of groups. It is surjective because we can check that

quaternions of the form a + bi hit the rotations about the i-axis, and similarly

a + cj hits the rotations about the j-axis, and these are enough to generate the

rotations of R3. The map has kernel {±1} since a quaternion that fixes the i axis

must be of the form a+ bi, and if it fixes the j axis it must be of the form a+ cj,

so if it fixes both then it must be real, which leaves only +1 and −1.

Now we will show φ is a covering map. It suffices to do this at the identity of

SO(3), since we can use left-multiplication to translate the result to all other

points. We pick a small neighborhood U of the identity 1 ∈ SO(3) such that

its preimage φ−1(U) lies in two small balls about +1 and −1 in S3. Focus on

the component V+1 ⊂ φ−1(U) about +1; we need to show that φ : V+1 → U is

a homeomorphism. We already know from the above that it is surjective. For

injectivity, if two quaternions q1, q2 ∈ V+1 gave the same rotation in U , then

q1q
−1
2 = ±1, but when U is small enough the only possibility is +1, so q1 = q2. Now

φ : V+1 → U is a continuous bijection, but by restricting to a slightly smaller closed

ball C ⊂ U and its preimage, we get a continuous bijection between a compact

space and a Hausdorff one, which is therefore a homeomorphism. Restricting this

to an even slightly smaller open ball U ′ ⊂ C, we conclude that U ′ is an evenly

covered open set.

Now we know that φ is a 2-sheeted cover. Since S3 is simply connected, it is the

universal cover of SO(3) and so π1(SO(3)) ∼= Z/2.



6. (18 points total) Computation via decompositions. Let X be the quotient space of

S2 obtained by identifying the north and south poles to a single point.

a. (6 points) Put a cell complex structure on X and use this to compute π1(X).

b. (6 points) Put a ∆-complex structure on X and use this to compute H∆
∗ (X),

its simplicial homology for this structure.

c. (6 points) Compute the singular homology of X directly, using the Mayer-

Vietoris sequence or excision.

Solutions: See next page.













7. (12 points total) A covering space corresponding to a subgroup. Let X be a wedge of

three circles with basepoint p the common point at which the circles are wedged.

We showed in class that the fundamental group of π1(X, p) is 〈a, b, c〉, the free

group on three generators.

a. (7 points) Let G ⊂ π1(X, p) be the subgroup

G := 〈a4, ac, c2, ab, b2, a2ba−3, a2b−1a−3, a2ca−3, a2c−1a−3〉. (37)

Find a covering space with basepoint

π : (X̃, p̃)→ (X, p) (38)

corresponding to the group G.

b. (5 points) Now, using the topology of this covering space, prove that G is not

a normal subgroup of 〈a, b, c〉.

Solutions: See next page.






