Math 215B Take-home Midterm Solutions

February 20, 2013

1. (10 points total) Wrong-way maps. We have seen that singular homology is a functorial assignment, that is, given a map $f: X \rightarrow Y$ of topological spaces, there is an induced map $f_{*}: H_{i}(X) \rightarrow H_{i}(Y)$ on homology groups. In some cases, if the map $f: X \rightarrow Y$ is particularly nice, there also exists a map $f^{!}: H_{i}(Y) \rightarrow H_{i}(X)$, called a wrong-way or transfer map.
a. (5 points) Let $p: \tilde{X} \rightarrow X$ be a k-sheeted covering map, for some finite k. Construct a (non-trivial!) map of chain complexes

$$
\begin{equation*}
C_{i}(X) \longrightarrow C_{i}(\tilde{X}) \tag{1}
\end{equation*}
$$

and show that it is a chain map, giving rise to an induced map on homology

$$
\begin{equation*}
p^{!}: H_{i}(X) \longrightarrow H_{i}(\tilde{X}) \tag{2}
\end{equation*}
$$

b. (5 points). Show that the composition

$$
\begin{equation*}
p_{*} \circ p^{\prime}: H_{i}(X) \rightarrow H_{i}(X) \tag{3}
\end{equation*}
$$

is multiplication by k.
Solution: 1a. Define the chain map $\phi: C_{n}(X) \rightarrow C_{n}(\widetilde{X})$ by taking each n-simplex

$$
\sigma: \Delta^{n} \rightarrow X
$$

to the sum of its k lifts to \widetilde{X}. There are always exactly k lifts, since 1.33 and 1.34 in Hatcher tell us that each preimage of $\sigma\left(x_{0}\right)$ corresponds to a unique lift, and there are k such preimages. Taking the i th face of each of these k lifts, we get k distinct lifts of $\partial_{i} \sigma$, which must be the k unique lifts of this $(k-1)$-simplex. Therefore taking the sum of lifts commutes with ∂_{i}, so it commutes with $\partial=\sum_{i}(-1)^{i} \partial_{i}$ as well. Therefore ϕ a chain map, so it passes to a transfer map on homology

$$
H_{n}(X) \rightarrow H_{n}(\widetilde{X})
$$

1b. It suffices to show that $p_{\#} \circ \phi$ is multiplication by k, before passing to homology classes. Under this chain map, the simplex σ goes to the sum of its k lifts, each of which is then mapped back to σ, so we get a sum of k copies of σ. So $p_{\#} \circ \phi$ is multiplication by k and we are done.
2. (14 points total) Applications to group theory.
a. (7 points) Let X be a wedge sum of n circles, with its natural graph structure, and let $\tilde{X} \rightarrow X$ be a covering space with $Y \subset \tilde{X}$ a finite connected graph. Show there is a finite graph $Z \supset Y$ having the same vertices as Y, such that the projection $Y \rightarrow X$ extends to a covering space $Z \rightarrow X$.
b. (7 points) Using the above fact if necessary, prove the following result in group theory: Let F be a finitely generated free group, $H \subset F$ a finitely generated subgroup, and $x \in F-H$. Then there is a subgroup K of finite index such that $K \supset H$ and $x \notin K$.

Solution: 2a. Label the n loops of X by a_{1}, \ldots, a_{n}. We will adopt the convention that each lift of a_{i} in \widetilde{X} or Z will also be labelled a_{i}.

Suppose that Y has m vertices, and fix a value of i between 1 and n. There are k edges labelled a_{i} in Y, with $0 \leq k \leq m$. Since Y is contained in a cover of X, each vertex of Y has at most one edge labelled a_{i} coming in or going out. There are m vertices and k edges labelled a_{i}, so exactly $m-k$ of the vertices have no a_{i} coming in, and exactly $m-k$ of the vertices have no a_{i} going out. Therefore we may pick a bijection

$$
\left\{\text { vertices with no } a_{i} \text { going out }\right\} \xrightarrow{\cong}\left\{\text { vertices with no } a_{i} \text { coming in }\right\}
$$

and this bijection tells us how to attach $m-k$ more edges to Y so that each each vertex has exactly one edge labelled a_{i} pointing in and one edge labelled a_{i} pointing out. Doing this separately for each value of i, we arrive at a graph Z containing Y whose edges are labelled in a way that describes a covering map $Z \rightarrow X$ extending $Y \rightarrow X$. Note that Z will not in general be contained in \widetilde{X}.

2b. We are given a finitely generated free group F, a finitely generated subgroup H, and an element $x \in F-H$. Let X be a wedge of one circle for each generator of F, so $\pi_{1}(X) \cong F$. Let $\left(\widetilde{X}, \widetilde{x}_{0}\right) \rightarrow\left(X, x_{0}\right)$ be a cover associated to $H \subset F$. For each element of some finite set of generators for H, pick a finite edgepath γ_{i} that begins and ends at \widetilde{x}_{0}. In addition, pick a finite edgepath α in \widetilde{X} that starts at \widetilde{x}_{0} and lifts the loop in X corresponding to x. Since x is not in the subgroup H,
α will not end at \widetilde{x}_{0}. Now let Y be the union of α and all the γ_{i}, and extend Y to a covering space Z using the above problem. Let $K \subset F$ be the subgroup corresponding to the image of $\pi_{1}\left(Z, \widetilde{x}_{0}\right)$ in $\pi_{1}(X)$. Then K obviously contains H, but it does not contain x because the path representing x in X lifts to α in Z, which is not a closed loop. Finally, K has finite index because Z has finitely many vertices, which are the preimages of the basepoint of X.
3. (12 points) Spaces not distinguished by homology. Show that $S^{1} \times S^{1}$ and $S^{1} \vee S^{1} \vee S^{2}$ have isomorphic homology groups in all dimensions, but their universal covering spaces do not.

Solution: Using previous computations, the homology groups of $S^{1} \times S^{1}$ are $\mathbb{Z}, \mathbb{Z}^{2}, \mathbb{Z}$. Using the formula for the reduced homology of a wedge, the homology groups of $S^{1} \vee S^{1} \vee S^{2}$ are also $\mathbb{Z}, \mathbb{Z}^{2}, \mathbb{Z}$. The universal cover of $S^{1} \times S^{1}$ is \mathbb{R}^{2}, which is contractible, so it has the homology of a point. The universal cover of $S^{1} \vee S^{1} \vee S^{2}$ is obtained from the universal cover of $S^{1} \vee S^{1}$ by attaching a copy of S^{2} to every vertex. This is a 2-dimensional CW complex in which the 1-skeleton is a tree. Contracting this tree to a point, we get a countable wedge of 2 -spheres, so its homology is a countable direct sum $\bigoplus_{i=1}^{\infty} \mathbb{Z}$ in degree 2 , and 0 in all other positive degrees.
4. (10 points) Homological algebra. Let $\left(C_{*}^{n}, \partial\right)$ be a collection of chain complexes indexed by $n \in \mathbb{Z}$, i.e., for each $n \in \mathbb{Z}$, there is a chain complex

$$
\begin{equation*}
\cdots \rightarrow C_{k}^{n} \xrightarrow{\partial} C_{k-1}^{n} \xrightarrow{\partial} C_{k-2}^{n} \rightarrow \cdots . \tag{4}
\end{equation*}
$$

Let $f_{*}^{n}: C_{*}^{n} \rightarrow C^{n+1}$ be a chain map, one for each n. Suppose that the composite $f_{n+1} \circ f_{n}: C^{n} \rightarrow C^{n+2}$ is chain-homotopic to zero for all n, by a chain homotopy $K^{n}: C_{*}^{n} \rightarrow C_{*+1}^{n+2}$; that is,

$$
\begin{equation*}
f^{n+1} \circ f^{n}=\partial K^{n}+K^{n} \partial \tag{5}
\end{equation*}
$$

First part: Show that the map

$$
\begin{equation*}
\psi^{n}:=f^{n+2} \circ K^{n}-K^{n+1} \circ f^{n} \tag{6}
\end{equation*}
$$

is an anti-chain map from $C_{*}^{n} \rightarrow C_{*}^{n+3}$, meaning that $\partial \circ \psi^{n}=-\psi^{n} \circ \partial$, and deduce that ψ^{n} gives rise to a map on homology,

$$
\begin{equation*}
\psi_{*}^{n}: H_{i}\left(C_{*}^{n}, \partial\right) \longrightarrow H_{i+1}\left(C_{*}^{n+3}, \partial\right) \tag{7}
\end{equation*}
$$

for all n and i. Second part: Finally, suppose that (7) is an isomorphism for all n and i. Deduce that the sequence

$$
\begin{equation*}
\cdots \longrightarrow H_{i}\left(C_{*}^{n}, \partial\right) \xrightarrow{f_{*}^{n}} H_{i}\left(C_{*}^{n+1}, \partial\right) \xrightarrow{f_{*}^{n+1}} H_{i}\left(C^{n+2}, \partial\right) \longrightarrow \cdots \tag{8}
\end{equation*}
$$

is exact.

Solution of first part: First, let's check that ψ^{n} is an anti-chain map. We compute, using the chain homotopy equation $f^{n+1} \circ f^{n}=\partial K^{n}+K^{n} \partial$ and the fact that f^{n} is a chain map, so $\partial f^{n}=f^{n} \partial$:

$$
\begin{align*}
\partial \psi^{n} & =\partial f^{n+2} \circ K^{n}-\partial K^{n+1} \circ f^{n} \tag{9}\\
& =f^{n+2} \circ \partial \circ K^{n}-\left(-K^{n+1} \circ \partial+f^{n+2} \circ f^{n+1}\right) \circ f^{n} \tag{10}\\
& =f^{n+2} \circ\left(-K^{n} \circ \partial+f^{n+1} \circ f_{n}\right)-K^{n+1} \circ \partial \circ f_{n}+f^{n+2} \circ f^{n+1} \circ f^{n} \tag{11}\\
& =-f^{n+2} \circ K^{n} \circ \partial+K^{n+1} \circ \partial \circ f_{n} \tag{12}\\
& =-\left(f^{n+2} K^{n}-K^{n+1} f^{n}\right) \circ \partial \tag{13}\\
& =-\psi^{n} \circ \partial . \tag{14}
\end{align*}
$$

Let us show an anti-chain map ψ gives rise to a well-defined map on homology

$$
\begin{align*}
\psi_{*}: H_{i}\left(C_{*}^{n}\right) & \longrightarrow H_{i+1}\left(C_{*}^{n+3}\right) \tag{15}\\
{[\alpha] } & \longmapsto[\psi \alpha]
\end{align*}
$$

First, we must check it sends cycles to cycles. If α is a cycle, then $\partial \psi \alpha=-\psi \partial \alpha=0$ as desired. To check well-definedness, suppose $\alpha+\partial \beta$ is another representative of $[\alpha]$. Then, $\psi(\alpha+\partial \beta)=\psi \alpha-\partial \psi \beta$ is homologous to $\psi \alpha$.

Solution of second part: Before proceeding, let us verify a key identity involving ψ_{*}^{n}.
Claim: On homology, we have

$$
\begin{equation*}
\psi_{*}^{n} f_{*}^{n-1}=f_{*}^{n+2} \psi_{*}^{n-1} \tag{16}
\end{equation*}
$$

Proof of Claim. We compute, for a cycle $\beta \in C_{*}^{n-1}$ (so $\partial \beta=0$):

$$
\begin{align*}
\psi^{n} f^{n-1} \beta & =\left(f^{n+2} K^{n}-K^{n+1} f^{n}\right) f^{n-1} \beta \tag{17}\\
& =f^{n+2} K^{n} f^{n-1} \beta-K^{n+1} f^{n} f^{n-1} \beta \tag{18}\\
& =f^{n+2} K^{n} f^{n-1} \beta-K^{n+1}\left(\partial K^{n-1}+K^{n-1} \partial\right) \beta \tag{19}\\
& =f^{n+2} K^{n} f^{n-1} \beta-K^{n+1} \partial K^{n-1} \beta \tag{20}\\
& =f^{n+2} K^{n} f^{n-1} \beta-\left(f^{n+2} f^{n+1}-\partial K^{n+1}\right) K^{n-1} \beta \tag{21}\\
& =f^{n+2}\left(K^{n} f^{n-1}-f^{n+1} K^{n-1}\right) \beta+\partial K^{n+1} K^{n-1} \beta \tag{22}\\
& =f^{n+2} \psi^{n-1} \beta+(\text { a boundary }), \tag{23}
\end{align*}
$$

verifying the claim.
Now, suppose that ψ^{n} is an isomorphism. We need to verify the sequence (8) is exact, i.e. $\operatorname{ker} f_{*}^{n+1}=\operatorname{im} f_{*}^{n}$. There are two assertions to check:

- $\operatorname{im} f_{*}^{n} \subset \operatorname{ker} f_{*}^{n+1}$: this follows immediately from the chain homotopy (5). Indeed, for a cycle $\beta \in \operatorname{im} f_{*}^{n}$, so β is homologous to $f^{n} \alpha$, for some cycle α, we have that

$$
\begin{align*}
f^{n+1} \beta & =f^{n+1} f^{n} \alpha+f^{n+1} \text { (a boundary) } \\
& \left.=\left(\partial K^{n}+K^{n} \partial\right) \alpha+f^{n+1} \text { (a boundary }\right) \tag{24}\\
& =(\text { a boundary }),
\end{align*}
$$

as $\partial \alpha=0$, verifying that on homology $f_{*}^{n+1}[\beta]=0$, so $\beta \in \operatorname{ker} f_{*}^{n+1}$.

- $\operatorname{ker} f_{*}^{n+1} \subset \operatorname{im} f_{*}^{n}$: Suppose we have a cycle $\beta \in C_{*}^{n+1}$ with $[\beta] \in \operatorname{ker} f_{*}^{n+1}$, so $f^{n+1} \beta=\partial \alpha$. By the isomorphism (7), β is homologous to $\psi^{n-2} \tau$, for some cycle $\tau \in C_{*}^{n-2}$.

Now, using the key identity, note that

$$
\begin{equation*}
f^{n+1} \beta \sim f^{n+1} \psi^{n} \tau=\psi^{n-1} f^{n-2} \tau+(\text { a boundary }) \tag{25}
\end{equation*}
$$

So, if $f^{n+1} \beta$ is a boundary, then $\psi^{n-1} f^{n-2} \tau$ is a boundary, which by the isomorphism (7), implies that $f^{n-2} \tau$ is a boundary, i.e.

$$
\begin{equation*}
f^{n-2} \tau=\partial \gamma \tag{26}
\end{equation*}
$$

Then, note that

$$
\begin{align*}
\beta & \sim \psi^{n-2} \tau \tag{27}\\
& =\left(f^{n} K^{n-2}-K^{n-1} f^{n-2}\right) \tau \tag{28}\\
& =f^{n} K^{n-2} \tau-K^{n-1} \partial \gamma \tag{29}\\
& =f^{n} K^{n-2} \tau-\left(f^{n} f^{n-1} \gamma-\partial K^{n-1} \gamma\right)=f^{n}\left(K^{n-2} \tau-f^{n-1} \gamma\right)-\partial\left(K^{n-1} \gamma\right) \tag{30}
\end{align*}
$$

If we can show that $\eta:=\left(K^{n-2} \tau-f^{n-1} \gamma\right)$ is closed, then the above calculation will imply that $f_{*}^{n}[\eta]=[\beta]$ as desired. We check:

$$
\begin{align*}
\partial \eta & =\partial\left(K^{n-2} \tau-f^{n-1} \gamma\right) \tag{31}\\
& =\left(f^{n-1} f^{n-2} \tau-f^{n-1} \partial \gamma\right) \tag{32}\\
& =\left(f^{n-1} f^{n-2} \tau-f^{n-1} f^{n-2} \tau\right) \tag{33}\\
& =0 \tag{34}
\end{align*}
$$

5. (14 points total) $S O(3)$ and the quaternions. The topological group $S O(3)$ is defined as the space of real 3×3 matrices A with that are orthogonal (meaning $A^{T}=A^{-1}$) and have determinant 1 . The topology on $S O(3)$ is the subspace topology, coming from the inclusion of $S O(3) \subset \mathbb{R}^{9}$, the space of all 3×3 matrices. Let \mathbb{H} denote the group of quaternions (recall that these are numbers of the form $a+b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}$, for $a, b, c, d \in \mathbb{R}$, with non-commutative multiplication rules determined by $\mathbf{i}^{2}=\mathbf{j}^{2}=\mathbf{k}^{2}=-1, \mathbf{i} \mathbf{j}=-\mathbf{j} \mathbf{i}=\mathbf{k}$).
a. (6 points) A quaternion is called pure if it has 0 real part, i.e., it is of the form $b \cdot \mathbf{i}+c \cdot \mathbf{j}+d \cdot \mathbf{k}$. Thinking of \mathbb{R}^{3} as the subspace of pure quaternions in \mathbb{H}, any quaternion $q \in \mathbb{H}$ induces a map

$$
\begin{align*}
A_{q}: \mathbb{R}^{3} & \longrightarrow \mathbb{R}^{3} \\
x & \longmapsto q x q^{-1} . \tag{35}
\end{align*}
$$

Show that when restricted to the unit quaternions (those with norm 1 using the usual Euclidean norm in \mathbb{R}^{4}), such a correspondence gives a (continuous) map

$$
\begin{equation*}
\phi: S^{3} \rightarrow S O(3) \tag{36}
\end{equation*}
$$

b. (8 points) Prove that the map ϕ is a covering map, and use it to calculate $\pi_{1}(S O(3))$.

Solutions: 5a. We use the following facts: the quaternions have a multiplicative norm, defined for

$$
q=a+b i+c j+d k
$$

as

$$
\|q\|=\sqrt{a^{2}+b^{2}+c^{2}+d^{2}}
$$

Also, the inverse of q is given by

$$
\frac{a-b i-c j-d k}{\|q\|^{2}}
$$

Since inversion of unit quaternions and multiplication of quaternions are both given by polynomials in each coordinate, they define continuous maps, so the given map

$$
A_{-}: S^{3} \rightarrow M_{3 \times 3}(\mathbb{R})
$$

is continuous. Since multiplication of quaternions preserves norms, the assignment

$$
x \mapsto q x q^{-1}
$$

preserves the norm of x as a vector in \mathbb{R}^{3}, so it defines an element of $O(3)$. Therefore A_{q} gives a continuous map

$$
S^{3} \rightarrow O(3)
$$

Since S^{3} is connected, this map must land in the path component of the identity, which is $S O(3)$.
5b. The map defined above

$$
\phi: S^{3} \rightarrow S O(3)
$$

is clearly a homomorphism of groups. It is surjective because we can check that quaternions of the form $a+b i$ hit the rotations about the i-axis, and similarly $a+c j$ hits the rotations about the j-axis, and these are enough to generate the rotations of \mathbb{R}^{3}. The map has kernel $\{ \pm 1\}$ since a quaternion that fixes the i axis must be of the form $a+b i$, and if it fixes the j axis it must be of the form $a+c j$, so if it fixes both then it must be real, which leaves only +1 and -1 .

Now we will show ϕ is a covering map. It suffices to do this at the identity of $S O(3)$, since we can use left-multiplication to translate the result to all other points. We pick a small neighborhood U of the identity $1 \in S O(3)$ such that its preimage $\phi^{-1}(U)$ lies in two small balls about +1 and -1 in S^{3}. Focus on the component $V_{+1} \subset \phi^{-1}(U)$ about +1 ; we need to show that $\phi: V_{+1} \rightarrow U$ is a homeomorphism. We already know from the above that it is surjective. For injectivity, if two quaternions $q_{1}, q_{2} \in V_{+1}$ gave the same rotation in U, then $q_{1} q_{2}^{-1}= \pm 1$, but when U is small enough the only possibility is +1 , so $q_{1}=q_{2}$. Now $\phi: V_{+1} \rightarrow U$ is a continuous bijection, but by restricting to a slightly smaller closed ball $C \subset U$ and its preimage, we get a continuous bijection between a compact space and a Hausdorff one, which is therefore a homeomorphism. Restricting this to an even slightly smaller open ball $U^{\prime} \subset C$, we conclude that U^{\prime} is an evenly covered open set.
Now we know that ϕ is a 2 -sheeted cover. Since S^{3} is simply connected, it is the universal cover of $S O(3)$ and so $\pi_{1}(S O(3)) \cong \mathbb{Z} / 2$.
6. (18 points total) Computation via decompositions. Let X be the quotient space of S^{2} obtained by identifying the north and south poles to a single point.
a. (6 points) Put a cell complex structure on X and use this to compute $\pi_{1}(X)$.
b. (6 points) Put a Δ-complex structure on X and use this to compute $H_{*}^{\Delta}(X)$, its simplicial homology for this structure.
c. (6 points) Compute the singular homology of X directly, using the MayerVietoris sequence or excision.

Solutions: See next page.
comer from outing as
6.a.) There are many choices, but one Cu structure is folbws:

ie. $X^{0}=0$

$$
x^{1}=
$$

X^{2} consists of attaching tho \& 2 -cells to x^{1}, one along $b a$ and another along. $b^{-1} a^{-1}$. Now, $\pi_{1}\left(X_{p}^{1}\right)=\langle a, b\rangle$, so by Prop. 126 of Hatcher
which uses van hamper to compute the homology of CW complexes using the homstopy classes of the attaching map), we get that

$$
\begin{aligned}
\pi_{1}(X) & =\pi_{1}\left(X^{1}\right) /\left\langle b a, b^{-1} a^{-1}\right\rangle \\
& =\left\langle a, b \mid b a, b^{i} a^{-1}\right\rangle=\langle a b \mid b a\rangle \\
& \simeq\langle a\rangle=\mathbb{Z} .
\end{aligned}
$$

b) Viewing X as a torus $S^{2} N /$ meridian circle collapsed
 one obtains the following dexiption:

We can put the following Δ-simplex structure on this description

for this Δ-complex
Thus, $\wedge, C_{i} \begin{gathered}\text { structure, } \\ \text { Ter }\end{gathered}=\left\{\begin{array}{l}\mathbb{Z} v_{1} \oplus \mathbb{Z} v_{2}, \quad i=0 \\ \mathbb{Z} e_{1} \oplus \mathbb{Z} e_{2} \oplus \mathbb{Z} e_{3} \quad i=1 \\ \mathbb{Z} f_{1} \oplus \mathbb{Z} f_{2} \quad i=2 \\ 0 \text { otherwise. }\end{array}\right.$
The diffential is:

$$
\begin{gathered}
\partial f_{1}=e_{3}-e_{1}+e_{1}=e_{3} \\
\partial f_{2}=e_{2}-e_{2}-e_{3}=-e_{3} \\
\partial e_{1}=v_{2}-v_{1} \quad \partial e_{3}=v_{2}-v_{2}=0 \\
\partial e_{2}=v_{1}-v_{2} \\
\partial v_{1}=0, \quad \partial v_{2}=0,
\end{gathered}
$$

Thus, $\quad H_{2}^{\Delta}(x)=\frac{\operatorname{ker}_{2} \partial_{2}}{\text { in } \partial_{3}}=$ her $\partial_{2} \approx \not \mathscr{H}_{2}$ generate by $f_{1}+f_{2}$
$H_{1}^{D}(x)=\frac{\operatorname{ler} \partial_{1}}{i m \partial_{2}}=\frac{\left\langle e_{1} e_{2}, e_{3}\right\rangle}{\left\langle e_{3}\right\rangle} \approx \not \mathbb{H}^{\prime}$, yevertey wy $\left[e_{1}-e_{2}\right]$,

$$
H_{0}^{\Delta}(x)=\frac{\operatorname{ter} \partial_{0}}{i n \partial_{1}}=\frac{\left\langle v_{1}, v_{2}\right\rangle}{\left\langle v_{1}-v_{2}\right\rangle} \approx \mathbb{Z}
$$

and $H_{i}^{\Delta}(x)=0$ for $i \neq 0,1,2$.
c) Using excision: Let $n, p \in S^{2}$ be the north 8 south poles, and $S^{0} \subset S^{2}$ be $\{n, p\}$, Note $X=S^{2} / S^{0}$.
Claim: $\left(5^{2}, 5^{\circ}\right)$ is a good put. The open hood defloration extracting to S^{2}, is a vision of small balls aram n, p Thus, we upply the LES for the reduce homology of the pair (which uses excision):

$$
\rightarrow \widetilde{H}_{i}\left(S^{0}\right) \rightarrow \widetilde{H}_{i}\left(s^{2}\right) \rightarrow \widetilde{H}_{i}(X) \rightarrow \widetilde{H}_{i-1}\left(s^{0}\right) \rightarrow \tilde{H}_{i-1}\left(s^{2}\right) \rightarrow \cdots
$$

Lett lase this to compete $\tilde{H}_{i}(x)$:

- If $i>2$, the $\tilde{H}_{i}\left(5^{\circ}\right) \cong \tilde{H}_{i-}\left(5^{\circ}\right)$, so for the LES:

$$
0=\nabla_{i}\left(s^{2}\right) \cong F_{i}(x) \text {. }
$$

- If $i=2$, then $\tilde{H}_{i}\left(5^{\circ}\right)=0$, and $\bar{H}_{-1}\left(S^{\circ}\right)=0$, so foumthe Les:

$$
\mathbb{Z}=\widetilde{H}_{2}\left(s^{2}\right) \cong \tilde{H}_{2}(\lambda) .
$$

- If $i=1$, then $\tilde{H}_{i}\left(S^{2}\right)=0$ and $\tilde{H}_{i-1}\left(S^{2}\right)=0$, so from the Les: $\tilde{H}_{i}(x) \cong \tilde{H}_{0}\left(s^{\circ}\right) \cong \mathbb{Z}$.
- If $i=0$, then $\tilde{H}_{i}\left(s^{2}\right)=0$ and $\tilde{H}_{1}\left(s^{\circ}\right)=0$, so

$$
\tilde{H}_{i}(x)=0 .
$$

Thu, $\tilde{H}_{i}(x)= \begin{cases}\mathbb{Z} & i=1,2 \\ 0 & 0 \text { therese, }\end{cases}$

$$
\text { so } \quad H(X)= \begin{cases}\mathbb{Z} & i=0,12 \tag{园}\\ 0 & \text { other se. }\end{cases}
$$

Altentely, witty Mayer-Vietors $(M-V)$:
Decompose X as $A \cup B$ using this picture:
We have $A \simeq p t, \quad B \simeq S^{1}$,

$$
A \cap B \simeq S^{1} 川 \cdot S^{1} .
$$

$M-V$ ques us the follow., LES:- (for reduce han dory)

$$
\longrightarrow \tilde{H}_{i}(A \cap B) \longrightarrow \tilde{H}_{i}(A) \oplus \tilde{H}_{i}(B) \longrightarrow \tilde{H}_{i}(X) \xrightarrow{\Sigma_{ \pm}} \tilde{H}_{i=1}(A \cap B) \rightarrow \tilde{H}_{i}(A)
$$

- when $i=0, \tilde{H}_{0}(A) \oplus \vec{H}_{0}(B)=0+0=0$,

$$
\text { and } \tilde{H}-(A \cap B)=0 \text {, } s=
$$

$$
F_{0}(x)=0
$$

- when $i=1, \bar{H}_{1}(A)=\bar{H}_{3}(e t)=0$ and $\tilde{H}_{0}(A \cap B)$
$\frac{11}{2},=0$
we have the exact sequence.

$$
\vec{H}_{1}(A \cap B) \longrightarrow \widetilde{H}_{1}(B) \xrightarrow{\left(i_{B}\right)_{x}} \tilde{H}_{1}(x) \longrightarrow \underset{H}{\mathbb{H}} \rightarrow 0
$$

Claim: $\tilde{H}_{2}(A \cap B) \rightarrow \widetilde{H}_{1}(B)$ is sorjective.
Cor: $\left(X_{B}\right)_{*}$ is 0 , so $\tilde{H}_{1}(X) \stackrel{\cong}{\rightrightarrows} \mathbb{Z}$. (by exactness).
Proof of claim: $A n B=F_{1} \Perp F_{2}$, where ah $F_{i} \simeq s^{2}$.
This, $\tilde{H}_{2}(A \cap B)=\tilde{H}_{1}\left(F_{1}\right) \oplus \tilde{H}_{1}\left(F_{2}\right)$,
So it a nl subdue to she $\widehat{H}_{1}(F) \xrightarrow{i k} \tilde{H}_{2}(B)$ is sujectree, when e $i=F_{1} \longleftrightarrow \beta$ is the inclusion.
But is a hamotofy equmitence, so were dare, fy

- When $i=2, \quad F_{2}(A \cap B)=H_{2}(A)=H_{2}(B)=0$,

$$
H_{1}(A \cap D)=\bar{H}_{1}\left(F_{1}\right) \omega \bar{H}\left(F_{2}\right)=\mathbb{Z}_{\infty} \mathbb{Z}, \tilde{H}_{1}(A)=C
$$

and $\vec{H}_{2}(B)=\bar{H}_{1}\left(S^{\prime}\right)=\mathbb{Z}$, so we get.
$0 \rightarrow \bar{H}_{2}(x) \xrightarrow{\partial_{4}} \tilde{H}_{1}\left(F_{1}\right) \oplus \tilde{H}_{1}\left(F_{2}\right) \xrightarrow{j_{x}} \tilde{H}_{1}(B) \rightarrow \cdots$

$$
\mathbb{Z} \oplus \mathbb{Z},
$$

u_{p} to a chore of generator here j, j, sends (a, b) to $\pm a \pm b \quad$ (as $j_{x}\left(\tilde{H}_{i}\left(f_{i}\right)\right.$ is a_{x} romophism $)$. And, ∂_{x} is injective.
Hance, $\tilde{H}_{2}(x) \approx$ in $\alpha_{*} \cong$ her $j_{x} \cong \mathbb{Z}$

- when $i>2, \quad \tilde{H}_{i}(A)=\tilde{H}_{i}(B)=\vec{H}_{1},(A \cap B)=0, s o H_{i}(x)=0$.

Thus, sice mone,

$$
\tilde{H}_{i}(x)= \begin{cases}\mathbb{Z} & i=1 ; 2 \\ 0 & \text { othervise, }\end{cases}
$$

and $H_{i}(x)=\left\{\begin{array}{c}\mathbb{Z} i=0,1,2 \\ 0\end{array}\right.$
7. (12 points total) A covering space corresponding to a subgroup. Let X be a wedge of three circles with basepoint p the common point at which the circles are wedged. We showed in class that the fundamental group of $\pi_{1}(X, p)$ is $\langle a, b, c\rangle$, the free group on three generators.
a. (7 points) Let $G \subset \pi_{1}(X, p)$ be the subgroup

$$
\begin{equation*}
G:=\left\langle a^{4}, a c, c^{2}, a b, b^{2}, a^{2} b a^{-3}, a^{2} b^{-1} a^{-3}, a^{2} c a^{-3}, a^{2} c^{-1} a^{-3}\right\rangle . \tag{37}
\end{equation*}
$$

Find a covering space with basepoint

$$
\begin{equation*}
\pi:(\tilde{X}, \tilde{p}) \rightarrow(X, p) \tag{38}
\end{equation*}
$$

corresponding to the group G.
b. (5 points) Now, using the topology of this covering space, prove that G is not a normal subgroup of $\langle a, b, c\rangle$.

Solutions: See next page.
7) ${ }^{2}$ The space X is depicted here:

By the same reasoning as in § 1.3 .f Hatcher, to specify a covery space of X_{j} it suffices to draw a graph, labeling edges a, b, or c (corresponding to the inane wile the covering pagection), such that

- locally, ever vertex looks like a hood of X_{0} in X, ie. there are three incosining edges labeled a, b, c, \& tone outgoing edges labeled a, b, c.
with such a labeling, the covering maphism p: $\widetilde{X} \rightarrow x$ is determined.

Nov, to arsuer (a), we need to exhibit such a space \tilde{X} with baspoint $\widetilde{x}_{0}, \&$ then check that $P_{*}\left(\pi_{1}\left(\tilde{x_{1}}, \tilde{x_{0}}\right)\right)$ has the right presentation.

Varrous heurstics lead us to consider the following covering space:

It is clearly aroverin space at X, because it satrifies the properties deserved above (with edge labels deterinining the covering map)

To compute $\pi_{1}(\tilde{X}, \tilde{x})$, we recall that glen a maximal sbbhee T_{0}, \tilde{y}, the quotient $\tilde{x} \longrightarrow \tilde{x} / T_{\text {is a canopy equiulence into }}$ a wedge of circles. π_{1} (a wedge of $s^{\prime}{ }^{s}$) is generates by a collection of loops, each of which goes once around ane of the circles, ore fer each S^{1}. Thus, $\pi,\left(\tilde{x}_{X_{0}}\right)$ is generates by tops pectin, to such lopes, ie. loops contain exactly ne edge aside of T, one for each edge utricle of T.

Using this maximal subtree

and the above presantion,
we con thus read. If gereaters for $p_{F} \pi_{1}\left(\tilde{x}, \tilde{x}_{0}\right) \quad$ (as p_{+}is infective):
$\left\langle a^{4}, a b, a b^{-1}, a c, a c^{-1}, a^{2} b a^{-3}, a^{2} c a^{-3}, a^{2} b^{-1} a^{-3}, a^{2} c^{-1} a^{-3}\right\rangle$ which is

$$
\cong<a, a b, b^{2}, a c, c^{2}, a^{2} b a^{-3}, a^{2} c a^{-3}, a^{2} b^{-1} a^{-3}, a^{2} c^{-1} a^{-3}>
$$

as were only danged \mid those tho, and one can see that $\left\langle a b, b^{2}, a c, c^{2}\right\rangle \cong\left\langle a b, a b^{-1}, a c, a c^{-1}\right\rangle$.
(b) It suffice by Hatcher $\xi 1.3$ to show that $\widetilde{X}_{2} \xrightarrow{p} X$ is a st a normal covers spice, which will follow from

Pf:: A deck transformation would have to take a path labeled ba stating at \tilde{x}_{0} to a path labeled ba stating at \tilde{y}. But the latter path is a closed loop, and the former is not.

